1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368 |
- #include <sstream>
- #include <iostream>
- #include "SemSegCsurka.h"
- #include "vislearning/baselib/ICETools.h"
- #include "core/image/Filter.h"
- #include "semseg/semseg/postsegmentation/PSSImageLevelPrior.h"
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- #undef DEBUG_CSURK
- #undef UNCERTAINTY
- // #define UNCERTAINTY
- SemSegCsurka::SemSegCsurka ( const Config *conf,
- const MultiDataset *md )
- : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
- {
- this->conf = conf;
- opSiftImpl = conf->gS ( "Descriptor", "implementation", "VANDESANDE" );
- readfeat = conf->gB ( "Descriptor", "read", true );
- writefeat = conf->gB ( "Descriptor", "write", true );
- #ifdef DEBUG_CSURK
- clog << "[log] SemSegCsurka::SemSegCsurka: OppenentSift implemenation: " << opSiftImpl << endl;
- #endif
- save_cache = conf->gB ( "FPCPixel", "save_cache", true );
- read_cache = conf->gB ( "FPCPixel", "read_cache", false );
- cache = conf->gS ( "cache", "root", "" );
- sigmaweight = conf->gD ( "SemSegCsurka", "sigmaweight", 0.6 );
- dim = conf->gI ( "SemSegCsurka", "pcadim", 50 );
- usepca = conf->gB ( "SemSegCsurka", "usepca", true );
- calcpca = conf->gB ( "SemSegCsurka", "calcpca", false );
- usegmm = conf->gB ( "SemSegCsurka", "usegmm", false );
- norm = conf->gB ( "SemSegCsurka", "normalize", false );
- usefisher = conf->gB ( "SemSegCsurka", "usefisher", false );
- dogmm = conf->gB ( "SemSegCsurka", "dogmm", false );
- gaussians = conf->gI ( "SemSegCsurka", "gaussians", 50 );
- usekmeans = conf->gB ( "SemSegCsurka", "usekmeans", false );
- kmeansfeat = conf->gI ( "SemSegCsurka", "kmeansfeat", 50 );
- kmeanshard = conf->gB ( "SemSegCsurka", "kmeanshard", false );
- cname = conf->gS ( "SemSegCsurka", "classifier", "RandomForests" );
- anteil = conf->gD ( "SemSegCsurka", "anteil", 1.0 );
- userellocprior = conf->gB ( "SemSegCsurka", "rellocfeat", false );
- bool usesrg = conf->gB ( "SemSegCsurka", "usesrg", false );
- useregions = conf->gB ( "SemSegCsurka", "useregions", true );
- savesteps = conf->gB ( "SemSegCsurka", "savesteps", true );
- bool usegcopt = conf->gB ( "SemSegCsurka", "usegcopt", false );
- bestclasses = conf->gI ( "SemSegCsurka", "bestclasses", 0 );
- smoothhl = conf->gB ( "SemSegCsurka", "smoothhl", false );
- smoothfactor = conf->gD ( "SemSegCsurka", "smoothfactor", 1.0 );
- usecolorfeats = conf->gB ( "SemSegCsurka", "usecolorfeats", false );
- string rsMethod = conf->gS ( "SemSegCsurka", "segmentation", "meanshift" );
- g = NULL;
- k = NULL;
- relloc = NULL;
- srg = NULL;
- gcopt = NULL;
- if ( !useregions && ( userellocprior || usesrg ) )
- {
- cerr << "relative location priors and super region growing are just supported in combination with useregions" << endl;
- exit ( 1 );
- }
- if ( usepca )
- pca = PCA ( dim );
- RegionSegmentationMethod * tmpseg;
- if ( rsMethod == "meanshift" )
- tmpseg = new RSMeanShift ( conf );
- else
- tmpseg = new RSGraphBased ( conf );
- if ( save_cache )
- seg = new RSCache ( conf, tmpseg );
- else
- seg = tmpseg;
- if ( userellocprior )
- relloc = new RelativeLocationPrior ( conf );
- else
- relloc = NULL;
- #ifdef NICE_USELIB_ICE
- if ( usesrg )
- srg = new PPSuperregion ( conf );
- else
- srg = NULL;
- #else
- srg = NULL;
- #endif
- if ( usegcopt )
- gcopt = new PPGraphCut ( conf );
- else
- gcopt = NULL;
- classifier = NULL;
- vclassifier = NULL;
- if ( cname == "RandomForests" )
- classifier = new FPCRandomForests ( conf, "ClassifierForest" );
- else if ( cname == "SMLR" )
- classifier = new FPCSMLR ( conf, "ClassifierSMLR" );
- else if ( cname == "GPHIK" )
- classifier = new GPHIKClassifierNICE ( conf, "ClassiferGPHIK" );
- else
- vclassifier = GenericClassifierSelection::selectVecClassifier ( conf, "main" );
- //classifier = new FPCSparseMultinomialLogisticRegression(conf, "ClassifierSMLR");
- if ( classifier != NULL )
- classifier->setMaxClassNo ( classNames->getMaxClassno() );
- else
- vclassifier->setMaxClassNo ( classNames->getMaxClassno() );
- cn = md->getClassNames ( "train" );
- if ( read_cache )
- {
- fprintf ( stderr, "SemSegCsurka:: Reading classifier data from %s\n", ( cache + "/fpcrf.data" ).c_str() );
- if ( classifier != NULL )
- classifier->read ( cache + "/fpcrf.data" );
- else
- vclassifier->read ( cache + "/veccl.data" );
- if ( usepca )
- {
- std::string filename = cache + "/pca";
- pca.read ( filename );
- }
- if ( usegmm )
- {
- g = new GMM ( conf, gaussians );
- if ( !g->loadData ( cache + "/gmm" ) )
- {
- cerr << "SemSegCsurka:: no gmm file found" << endl;
- exit ( -1 );
- }
- }
- else {
- g = NULL;
- }
- if ( usekmeans )
- {
- k = new KMeansOnline ( gaussians );
- }
- fprintf ( stderr, "SemSegCsurka:: successfully read\n" );
- std::string filename = cache + "/rlp";
- FILE *value;
- value = fopen ( filename.c_str(), "r" );
- if ( value == NULL )
- {
- trainpostprocess ( md );
- }
- else
- {
- if ( userellocprior )
- {
- relloc->read ( filename );
- }
- }
- filename = cache + "/srg";
- value = fopen ( filename.c_str(), "r" );
- if ( value == NULL )
- {
- trainpostprocess ( md );
- }
- else
- {
- if ( srg != NULL )
- {
- srg->read ( filename );
- }
- }
- }
- else
- {
- train ( md );
- }
- }
- SemSegCsurka::~SemSegCsurka()
- {
- // clean-up
- if ( classifier != NULL )
- delete classifier;
- if ( vclassifier != NULL )
- delete vclassifier;
- if ( seg != NULL )
- delete seg;
- g = NULL;
- if ( g != NULL )
- delete g;
- }
- void SemSegCsurka::normalize ( Examples &ex )
- {
- assert ( ex.size() > 0 );
- if ( vecmin.size() == 0 )
- {
- for ( int j = 0; j < ( int ) ex[0].second.vec->size(); j++ )
- {
- double maxv = -numeric_limits<int>::max();
- double minv = numeric_limits<int>::max();
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- maxv = std::max ( maxv, ( *ex[i].second.vec ) [j] );
- minv = std::min ( minv, ( *ex[i].second.vec ) [j] );
- }
- vecmin.push_back ( minv );
- vecmax.push_back ( maxv );
- }
- }
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- for ( int j = 0; j < ( int ) ex[i].second.vec->size(); j++ )
- {
- ( *ex[i].second.vec ) [j] = ( ( *ex[i].second.vec ) [j] - vecmin[j] ) / ( vecmax[j] - vecmin[j] );
- }
- }
- return;
- }
- void SemSegCsurka::convertLowToHigh ( Examples &ex, double reduce )
- {
- cout << "converting low-level features to high-level features" << endl;
- if ( reduce >= 1.0 )
- {
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- SparseVector *f = new SparseVector();
- if ( usekmeans )
- {
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
- }
- else
- {
- if ( usefisher )
- g->getFisher ( *ex[i].second.vec, *f );
- else
- g->getProbs ( *ex[i].second.vec, *f );
- }
- delete ex[i].second.vec;
- ex[i].second.vec = NULL;
- ex[i].second.svec = f;
- }
- }
- else
- {
- srand ( time ( NULL ) );
- vector<bool> del ( ex.size(), false );
- cout << "Example size old " << ex.size() << endl;
- //#pragma omp parallel for
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- double rval = ( double ) rand() / ( double ) RAND_MAX;
- if ( rval < reduce )
- {
- SparseVector *f = new SparseVector();
- if ( usekmeans )
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
- else
- {
- if ( usefisher )
- g->getFisher ( *ex[i].second.vec, *f );
- else
- g->getProbs ( *ex[i].second.vec, *f );
- }
- delete ex[i].second.vec;
- ex[i].second.vec = NULL;
- ex[i].second.svec = f;
- }
- else
- {
- del[i] = true;
- }
- }
- for ( int i = ( int ) del.size() - 1; i >= 0; i-- )
- {
- if ( del[i] )
- {
- ex.erase ( ex.begin() + i );
- }
- }
- cerr << "Example size new " << ex.size() << endl;
- }
- cerr << "converting low-level features to high-level features finished" << endl;
- }
- void SemSegCsurka::smoothHL ( Examples ex )
- {
- if ( !smoothhl )
- return;
- assert ( ex.size() > 1 );
- long long int minx = numeric_limits<long long int>::max();
- long long int miny = numeric_limits<long long int>::max();
- long long int maxx = -numeric_limits<long long int>::max();
- long long int maxy = -numeric_limits<long long int>::max();
- long long int distx = numeric_limits<long long int>::max();
- long long int disty = numeric_limits<long long int>::max();
- set<double> scales;
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- scales.insert ( ex[i].second.scale );
- }
- map<double, int> scalepos;
- int it = 0;
- for ( set<double>::const_iterator iter = scales.begin(); iter != scales.end(); ++iter, ++it )
- {
- scalepos.insert ( make_pair ( *iter, it ) );
- }
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- if ( minx < numeric_limits<int>::max() && ex[i].second.x - minx > 0 )
- distx = std::min ( distx, ex[i].second.x - minx );
- if ( miny < numeric_limits<int>::max() && ex[i].second.y - miny > 0 )
- disty = std::min ( disty, ex[i].second.y - miny );
- minx = std::min ( ( long long int ) ex[i].second.x, minx );
- maxx = std::max ( ( long long int ) ex[i].second.x, maxx );
- miny = std::min ( ( long long int ) ex[i].second.y, miny );
- maxy = std::max ( ( long long int ) ex[i].second.y, maxy );
- }
- distx = abs ( distx );
- int xsize = ( maxx - minx ) / distx + 1;
- int ysize = ( maxy - miny ) / disty + 1;
- double valx = ( ( double ) xsize - 1 ) / ( double ) ( maxx - minx );
- double valy = ( ( double ) ysize - 1 ) / ( double ) ( maxy - miny );
- //double sigma = smoothfactor;
- double sigma = std::max ( xsize, ysize ) * smoothfactor;
- //double sigma = 0.2;
- cout << "sigma1: " << sigma << endl;
- vector<NICE::FloatImage> imgv;
- vector<NICE::FloatImage> gaussImgv;
- for ( int i = 0; i < ( int ) scalepos.size(); i++ )
- {
- NICE::FloatImage img ( xsize, ysize );
- NICE::FloatImage gaussImg ( xsize, ysize );
- imgv.push_back ( img );
- gaussImgv.push_back ( gaussImg );
- }
- for ( int d = 0; d < ex[0].second.svec->getDim(); d++ )
- {
- //TODO: max und min dynamisches bestimmen
- for ( int i = 0; i < ( int ) scalepos.size(); i++ )
- {
- imgv[i].set ( 0.0 );
- gaussImgv[i].set ( 0.0 );
- }
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- int xpos = ( ex[i].second.x - minx ) * valx;
- int ypos = ( ex[i].second.y - miny ) * valy;
- double val = ex[i].second.svec->get ( d );
- imgv[scalepos[ex[i].second.scale]].setPixel ( xpos, ypos, val );
- }
- /*
- for(int y = 0; y < ysize; y++)
- {
- for(int x = 0; x < xsize; x++)
- {
- // refactor-nice.pl: check this substitution
- // old: double val = GetValD(img,x,y);
- double val = img.getPixel(x,y);
- double c = 0.0;
- if(val == 0.0)
- {
- if(x > 0)
- {
- // refactor-nice.pl: check this substitution
- // old: val+=GetValD(img,x-1,y);
- val+=img.getPixel(x-1,y);
- c+=1.0;
- }
- if(y > 0)
- {
- // refactor-nice.pl: check this substitution
- // old: val+=GetValD(img,x,y-1);
- val+=img.getPixel(x,y-1);
- c+=1.0;
- }
- if(x < xsize-1)
- {
- // refactor-nice.pl: check this substitution
- // old: val+=GetValD(img,x+1,y);
- val+=img.getPixel(x+1,y);
- c+=1.0;
- }
- if(y < ysize-1)
- {
- // refactor-nice.pl: check this substitution
- // old: val+=GetValD(img,x,y+1);
- val+=img.getPixel(x,y+1);
- c+=1.0;
- }
- // refactor-nice.pl: check this substitution
- // old: PutValD(img,x,y,val/c);
- img.setPixel(x,y,val/c);
- }
- }
- }*/
- for ( int i = 0; i < ( int ) imgv.size(); i++ )
- filterGaussSigmaApproximate<float, float, float> ( imgv[i], sigma, &gaussImgv[i] );
- for ( int i = 0; i < ( int ) ex.size(); i++ )
- {
- int xpos = ( ex[i].second.x - minx ) * valx;
- int ypos = ( ex[i].second.y - miny ) * valy;
- // refactor-nice.pl: check this substitution
- // old: double val = GetValD ( gaussImgv[scalepos[ex[i].second.scale]], xpos, ypos );
- double val = gaussImgv[scalepos[ex[i].second.scale]].getPixel ( xpos, ypos );
- if ( fabs ( val ) < 1e-7 )
- {
- if ( ex[i].second.svec->get ( d ) != 0.0 )
- {
- ex[i].second.svec->erase ( d );
- }
- }
- else
- {
- ( *ex[i].second.svec ) [d] = val;
- }
- }
- }
- }
- void SemSegCsurka::initializePCA ( Examples &ex )
- {
- #ifdef DEBUG
- cerr << "start computing pca" << endl;
- #endif
- std::string filename = cache + "/pca";
- FILE *value;
- value = fopen ( filename.c_str(), "r" );
- if ( value == NULL || calcpca )
- {
- srand ( time ( NULL ) );
- int featsize = ( int ) ex.size();
- int maxfeatures = dim * 10;
- int olddim = ex[0].second.vec->size();
- maxfeatures = std::min ( maxfeatures, featsize );
- NICE::Matrix features ( maxfeatures, olddim );
- for ( int i = 0; i < maxfeatures; i++ )
- {
- int k = rand() % featsize;
- int vsize = ( int ) ex[k].second.vec->size();
- for ( int j = 0; j < vsize; j++ )
- {
- features ( i, j ) = ( * ( ex[k].second.vec ) ) [j];
- }
- }
- pca.calculateBasis ( features, dim );
- if ( save_cache )
- pca.save ( filename );
- }
- else
- {
- cout << "readpca: " << filename << endl;
- pca.read ( filename );
- cout << "end" << endl;
- }
- #ifdef DEBUG
- cerr << "finished computing pca" << endl;
- #endif
- }
- void SemSegCsurka::doPCA ( Examples &ex )
- {
- cout << "converting features using pca starts" << endl;
- std::string savedir = cname = conf->gS ( "cache", "root", "/dev/null/" );
- std::string shortf = ex.filename;
- if ( string::npos != ex.filename.rfind ( "/" ) )
- shortf = ex.filename.substr ( ex.filename.rfind ( "/" ) );
- std::string filename = savedir + "/pcasave/" + shortf;
- std::string syscall = "mkdir " + savedir + "/pcasave";
- system ( syscall.c_str() );
- cout << "filename: " << filename << endl;
- if ( !FileMgt::fileExists ( filename ) || calcpca )
- {
- ofstream ofStream;
- //Opens the file binary
- ofStream.open ( filename.c_str(), fstream::out | fstream::binary );
- for ( int k = 0; k < ( int ) ex.size(); k++ )
- {
- NICE::Vector tmp = pca.getFeatureVector ( * ( ex[k].second.vec ), true );
- delete ex[k].second.vec;
- for ( int d = 0; d < ( int ) tmp.size(); d++ )
- ofStream.write ( ( char* ) &tmp[d], sizeof ( double ) );
- ex[k].second.vec = new NICE::Vector ( tmp );
- }
- ofStream.close();
- cout << endl;
- }
- else
- {
- ifstream ifStream;
- ifStream.open ( filename.c_str(), std::fstream::in | std::fstream::binary );
- for ( int k = 0; k < ( int ) ex.size(); k++ )
- {
- NICE::Vector tmp = NICE::Vector ( dim );
- delete ex[k].second.vec;
- for ( int d = 0; d < dim; d++ )
- ifStream.read ( ( char* ) &tmp[d], sizeof ( double ) );
- ex[k].second.vec = new NICE::Vector ( tmp );
- }
- ifStream.close();
- }
- cout << "converting features using pca finished" << endl;
- }
- void SemSegCsurka::train ( const MultiDataset *md )
- {
- /*die einzelnen Trainingsschritte
- 1. auf allen Trainingsbilder SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
- 2. PCA anwenden
- 3. aus diesen ein GMM erstellen
- 4. für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM, Zur Zeit mit BoV-Alternative durch Moosman06 erledigt
- 5. diese Vektoren in einem diskriminitativen Klassifikator ( z.B. SLR oder Randomized Forests) zusammen mit ihrer Klassenzugehörigkeit anlernen
- */
- #ifdef DEBUG
- cerr << "SemSegCsurka:: training starts" << endl;
- #endif
- Examples examples;
- examples.filename = "training";
- // Welche Opponentsift Implementierung soll genutzt werden ?
- LocalFeatureRepresentation *cSIFT = NULL;
- LocalFeatureRepresentation *writeFeats = NULL;
- LocalFeatureRepresentation *readFeats = NULL;
- LocalFeatureRepresentation *getFeats = NULL;
- if ( opSiftImpl == "NICE" )
- {
- cSIFT = new LFonHSG ( conf, "HSGtrain" );
- }
- else if ( opSiftImpl == "VANDESANDE" )
- {
- // the used features
- cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
- }
- else
- {
- fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
- }
- getFeats = cSIFT;
- if ( writefeat )
- {
- // write the features to a file, if there isn't any to read
- writeFeats = new LFWriteCache ( conf, cSIFT );
- getFeats = writeFeats;
- }
- if ( readfeat )
- {
- // read the features from a file
- if ( writefeat )
- {
- readFeats = new LFReadCache ( conf, writeFeats, -1 );
- }
- else
- {
- readFeats = new LFReadCache ( conf, cSIFT, -1 );
- }
- getFeats = readFeats;
- }
- // additional Colorfeatures
- LFColorWeijer lcw ( conf );
- int lfdimension = -1;
- const LabeledSet train = * ( *md ) ["train"];
- const LabeledSet *trainp = &train;
- ////////////////////////
- // Merkmale berechnen //
- ////////////////////////
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
- if ( forbidden_classes_s == "" )
- {
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
- }
- cn.getSelection ( forbidden_classes_s, forbidden_classes );
- cerr << "forbidden: " << forbidden_classes_s << endl;
- ProgressBar pb ( "Local Feature Extraction" );
- pb.show();
- int imgnb = 0;
- LOOP_ALL_S ( *trainp )
- {
- //EACH_S(classno, currentFile);
- EACH_INFO ( classno, info );
- pb.update ( trainp->count() );
- NICE::ColorImage img;
- std::string currentFile = info.img();
-
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
- currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
- NICE::Image pixelLabels ( xsize, ysize );
- pixelLabels.set ( 0 );
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- try {
- img = ColorImage ( currentFile );
- } catch ( Exception ) {
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN ( currentFile );
- VVector features;
- VVector cfeatures;
- VVector positions;
- NICE::ColorImage cimg ( currentFile );
- getFeats->extractFeatures ( img, features, positions );
- #ifdef DEBUG_CSURK
- cout << "[log] SemSegCsruka::train -> " << currentFile << " an " << positions.size() << " Positionen wurden Features (Anz = " << features.size() << ") " << endl;
- cout << "mit einer Dimension von " << features[ 0].size() << " extrahiert." << endl;
- #endif
- if ( usecolorfeats )
- lcw.getDescriptors ( cimg, cfeatures, positions );
- int j = 0;
- for ( VVector::const_iterator i = features.begin();
- i != features.end();
- i++, j++ )
- {
- const NICE::Vector & x = *i;
- classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- if ( lfdimension < 0 )
- lfdimension = ( int ) x.size();
- else
- assert ( lfdimension == ( int ) x.size() );
- NICE::Vector *v = new NICE::Vector ( x );
- if ( usecolorfeats && !usepca )
- v->append ( cfeatures[j] );
- Example example ( v );
- example.position = imgnb;
- examples.push_back (
- pair<int, Example> ( classno, example ) );
- }
- features.clear();
- positions.clear();
- delete ce;
- imgnb++;
- }
- pb.hide();
- //////////////////
- // PCA anwenden //
- //////////////////
- if ( usepca )
- {
- if ( !read_cache )
- {
- initializePCA ( examples );
- }
- doPCA ( examples );
- lfdimension = dim;
- }
- /////////////////////////////////////////////////////
- // Low-Level Features in High-Level transformieren //
- /////////////////////////////////////////////////////
- int hlfdimension = lfdimension;
- if ( norm )
- normalize ( examples );
- if ( usegmm )
- {
- if ( !usepca && !norm )
- normalize ( examples );
- g = new GMM ( conf, gaussians );
- if ( dogmm || !g->loadData ( cache + "/gmm" ) )
- {
- g->computeMixture ( examples );
- if ( save_cache )
- g->saveData ( cache + "/gmm" );
- }
- hlfdimension = gaussians;
- if ( usefisher )
- hlfdimension = gaussians * 2 * dim;
- }
- if ( usekmeans )
- {
- if ( !usepca || norm )
- normalize ( examples );
- k = new KMeansOnline ( gaussians );
- k->cluster ( examples );
- hlfdimension = gaussians;
- }
- if ( usekmeans || usegmm )
- {
- examples.clear();
- pb.reset ( "Local Feature Extraction" );
- lfdimension = -1;
- pb.update ( trainp->count() );
- LOOP_ALL_S ( *trainp )
- {
- EACH_INFO ( classno, info );
- pb.update ( trainp->count() );
- NICE::ColorImage img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
- currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
- NICE::Image pixelLabels ( xsize, ysize );
- pixelLabels.set ( 0 );
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- try {
- img = ColorImage ( currentFile );
- }
- catch ( Exception ) {
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN ( currentFile );
- VVector features;
- VVector cfeatures;
- VVector positions;
- NICE::ColorImage cimg ( currentFile );
- getFeats->extractFeatures ( img, features, positions );
- if ( usecolorfeats )
- lcw.getDescriptors ( cimg, cfeatures, positions );
- int j = 0;
- Examples tmpex;
- for ( VVector::const_iterator i = features.begin();
- i != features.end();
- i++, j++ )
- {
- const NICE::Vector & x = *i;
- classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- if ( lfdimension < 0 )
- lfdimension = ( int ) x.size();
- else
- assert ( lfdimension == ( int ) x.size() );
- NICE::Vector *v = new NICE::Vector ( x );
- if ( usecolorfeats )
- v->append ( cfeatures[j] );
- Example example ( v );
- example.position = imgnb;
- example.x = ( int ) positions[j][0];
- example.y = ( int ) positions[j][1];
- example.scale = positions[j][2];
- tmpex.push_back ( pair<int, Example> ( classno, example ) );
- }
- tmpex.filename = currentFile;
- if ( usepca )
- {
- doPCA ( tmpex );
- }
- convertLowToHigh ( tmpex, anteil );
- smoothHL ( tmpex );
- for ( int i = 0; i < ( int ) tmpex.size(); i++ )
- {
- examples.push_back ( pair<int, Example> ( tmpex[i].first, tmpex[i].second ) );
- }
- tmpex.clear();
- features.clear();
- positions.clear();
- delete ce;
- imgnb++;
- }
- pb.hide();
- }
- ////////////////////////////
- // Klassifikator anlernen //
- ////////////////////////////
- FeaturePool fp;
- Feature *f;
- if ( usegmm || usekmeans )
- f = new SparseVectorFeature ( hlfdimension );
- else
- f = new VectorFeature ( hlfdimension );
- f->explode ( fp );
- delete f;
- if ( usecolorfeats && ! ( usekmeans || usegmm ) )
- {
- int dimension = hlfdimension + 11;
- for ( int i = hlfdimension ; i < dimension ; i++ )
- {
- VectorFeature *f = new VectorFeature ( dimension );
- f->feature_index = i;
- fp.addFeature ( f, 1.0 / dimension );
- }
- }
- /*
- cout << "train classifier" << endl;
- fp.store(cout);
- getchar();
- for(int z = 0; z < examples.size(); z++)
- {
- cout << "examples.size() " << examples.size() << endl;
- cout << "class: " << examples[z].first << endl;
- cout << *examples[z].second.vec << endl;
- getchar();
- }*/
- if ( classifier != NULL )
- classifier->train ( fp, examples );
- else
- {
- LabeledSetVector lvec;
- convertExamplesToLSet ( examples, lvec );
- vclassifier->teach ( lvec );
- if ( usegmm )
- convertLSetToSparseExamples ( examples, lvec );
- else
- convertLSetToExamples ( examples, lvec );
- vclassifier->finishTeaching();
- }
- fp.destroy();
- if ( save_cache )
- {
- if ( classifier != NULL )
- classifier->save ( cache + "/fpcrf.data" );
- else
- vclassifier->save ( cache + "/veccl.data" );
- }
- ////////////
- //clean up//
- ////////////
- for ( int i = 0; i < ( int ) examples.size(); i++ )
- {
- examples[i].second.clean();
- }
- examples.clear();
- if ( cSIFT != NULL )
- delete cSIFT;
- if ( writeFeats != NULL )
- delete writeFeats;
- if ( readFeats != NULL )
- delete readFeats;
- getFeats = NULL;
- trainpostprocess ( md );
- cerr << "SemSeg training finished" << endl;
- }
- void SemSegCsurka::trainpostprocess ( const MultiDataset *md )
- {
- cout << "start postprocess" << endl;
- ////////////////////////////
- // Postprocess trainieren //
- ////////////////////////////
- const LabeledSet train = * ( *md ) ["train"];
- const LabeledSet *trainp = &train;
- if ( userellocprior || srg != NULL || gcopt != NULL )
- {
- clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior || srg != NULL || gcopt !=NULL )" << endl;
- if ( userellocprior )
- relloc->setClassNo ( cn.numClasses() );
- if ( gcopt != NULL )
- {
- gcopt->setClassNo ( cn.numClasses() );
- }
- ProgressBar pb ( "learn relative location prior maps" );
- pb.show();
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
- {
- EACH_INFO ( classno, info );
- pb.update ( trainp->count() );
- NICE::ColorImage img;
- std::string currentFile = info.img();
- Globals::setCurrentImgFN ( currentFile );
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
- currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
- NICE::Image pixelLabels ( xsize, ysize );
- pixelLabels.set ( 0 );
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- try {
- img = ColorImage ( currentFile );
- }
- catch ( Exception )
- {
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- //Regionen ermitteln
- NICE::Matrix mask;
- int regionsize = seg->segRegions ( img, mask );
- #ifdef DEBUG_CSURK
- Image overlay ( img.width(), img.height() );
- double maxval = -numeric_limits<double>::max();
- for ( int y = 0; y < img.height(); y++ )
- {
- for ( int x = 0; x < img.width(); x++ )
- {
- int val = ( ( int ) mask ( x, y ) + 1 ) % 256;
- overlay.setPixel ( x, y, val );
- maxval = std::max ( mask ( x, y ), maxval );
- }
- }
- cout << maxval << " different regions found" << endl;
- NICE::showImageOverlay ( img, overlay, "Segmentation Result" );
- #endif
- Examples regions;
- vector<vector<int> > hists;
- for ( int i = 0; i < regionsize; i++ )
- {
- Example tmp;
- regions.push_back ( pair<int, Example> ( 0, tmp ) );
- vector<int> hist ( cn.numClasses(), 0 );
- hists.push_back ( hist );
- }
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- int numb = mask ( x, y );
- regions[numb].second.x += x;
- regions[numb].second.y += y;
- regions[numb].second.weight += 1.0;
- hists[numb][pixelLabels.getPixel ( x,y ) ]++;
- }
- }
- for ( int i = 0; i < regionsize; i++ )
- {
- regions[i].second.x /= ( int ) regions[i].second.weight;
- regions[i].second.y /= ( int ) regions[i].second.weight;
- int maxval = -numeric_limits<int>::max();
- int maxpos = -1;
- int secondpos = -1;
- for ( int k = 0; k < ( int ) hists[i].size(); k++ )
- {
- if ( maxval < hists[i][k] )
- {
- maxval = hists[i][k];
- secondpos = maxpos;
- maxpos = k;
- }
- }
- if ( cn.text ( maxpos ) == "various" )
- regions[i].first = secondpos;
- else
- regions[i].first = maxpos;
- }
- if ( userellocprior )
- relloc->trainPriorsMaps ( regions, xsize, ysize );
- if ( srg != NULL )
- srg->trainShape ( regions, mask );
- if ( gcopt != NULL )
- gcopt->trainImage ( regions, mask );
- delete ce;
- }
- pb.hide();
- if ( userellocprior )
- relloc->finishPriorsMaps ( cn );
- if ( srg != NULL )
- srg->finishShape ( cn );
- if ( gcopt != NULL )
- gcopt->finishPP ( cn );
- }
- if ( userellocprior )
- {
- clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior )" << endl;
- ProgressBar pb ( "learn relative location classifier" );
- pb.show();
- int nummer = 0;
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
- {
- //EACH_S(classno, currentFile);
- EACH_INFO ( classno, info );
- nummer++;
- pb.update ( trainp->count() );
- NICE::Image img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
- currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
- NICE::Image pixelLabels ( xsize, ysize );
- pixelLabels.set ( 0 );
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- try {
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
- }
- catch ( Exception )
- {
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN ( currentFile );
- NICE::Image segresult;
- NICE::MultiChannelImageT<double> probabilities ( xsize, ysize, classno );
- Examples regions;
- NICE::Matrix mask;
- if ( savesteps )
- {
- std::ostringstream s1;
- s1 << cache << "/rlpsave/" << nummer;
- std::string filename = s1.str();
- s1 << ".probs";
- std::string fn2 = s1.str();
- FILE *file;
- file = fopen ( filename.c_str(), "r" );
- if ( file == NULL )
- {
- //berechnen
- classifyregions ( ce, segresult, probabilities, regions, mask );
- //schreiben
- ofstream fout ( filename.c_str(), ios::app );
- fout << regions.size() << endl;
- for ( int i = 0; i < ( int ) regions.size(); i++ )
- {
- regions[i].second.store ( fout );
- fout << regions[i].first << endl;
- }
- fout.close();
- probabilities.store ( fn2 );
- }
- else
- {
- //lesen
- ifstream fin ( filename.c_str() );
- int size;
- fin >> size;
- for ( int i = 0; i < size; i++ )
- {
- Example ex;
- ex.restore ( fin );
- int tmp;
- fin >> tmp;
- regions.push_back ( pair<int, Example> ( tmp, ex ) );
- }
- fin.close();
- probabilities.restore ( fn2 );
- }
- }
- else
- {
- classifyregions ( ce, segresult, probabilities, regions, mask );
- }
- relloc->trainClassifier ( regions, probabilities );
- delete ce;
- }
- relloc->finishClassifier();
- pb.hide();
- relloc->save ( cache + "/rlp" );
- }
- cout << "finished postprocess" << endl;
- }
- void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities, Examples &Regionen, NICE::Matrix & mask )
- {
- /* die einzelnen Testschritte:
- 1.x auf dem Testbild alle SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
- 2.x für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM
- 3.x diese Vektoren klassifizieren, so dass für jede Klasse die Wahrscheinlichkeit gespeichert wird
- 4.x für jeden Pixel die Wahrscheinlichkeiten mitteln aus allen Patches, in denen der Pixel vorkommt
- 5.x das Originalbild in homogene Bereiche segmentieren
- 6.x die homogenen Bereiche bekommen die gemittelten Wahrscheinlichkeiten ihrer Pixel
- 7. (einzelne Klassen mit einem globalen Klassifikator ausschließen)
- 8.x jeder Pixel bekommt die Klasse seiner Region zugeordnet
- */
- clog << "[log] SemSegCsruka::classifyregions" << endl;
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
- probabilities.reInit ( xsize, ysize, classNames->getMaxClassno() + 1 );
- clog << "[log] SemSegCsruka::classifyregions: probabilities.channels() = " << probabilities.channels() << endl;
- segresult.resize ( xsize, ysize );
- Examples pce;
- // Welche Opponentsift Implementierung soll genutzt werden ?
- LocalFeatureRepresentation *cSIFT = NULL;
- LocalFeatureRepresentation *writeFeats = NULL;
- LocalFeatureRepresentation *readFeats = NULL;
- LocalFeatureRepresentation *getFeats = NULL;
- if ( opSiftImpl == "NICE" )
- {
- cSIFT = new LFonHSG ( conf, "HSGtest" );
- }
- else if ( opSiftImpl == "VANDESANDE" )
- {
- // the used features
- cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
- }
- else
- {
- fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
- }
- getFeats = cSIFT;
- if ( writefeat )
- {
- // write the features to a file, if there isn't any to read
- writeFeats = new LFWriteCache ( conf, cSIFT );
- getFeats = writeFeats;
- }
- if ( readfeat )
- {
- // read the features from a file
- if ( writefeat )
- {
- readFeats = new LFReadCache ( conf, writeFeats, -1 );
- }
- else
- {
- readFeats = new LFReadCache ( conf, cSIFT, -1 );
- }
- getFeats = readFeats;
- }
- // additional Colorfeatures
- LFColorWeijer lcw ( conf );
- NICE::ColorImage img;
- std::string currentFile = Globals::getCurrentImgFN();
- try
- {
- img = ColorImage ( currentFile );
- }
- catch ( Exception )
- {
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
- }
- VVector features;
- VVector cfeatures;
- VVector positions;
- getFeats->extractFeatures ( img, features, positions );
- if ( usecolorfeats )
- lcw.getDescriptors ( img, cfeatures, positions );
- set<double> scales;
- int j = 0;
- int lfdimension = -1;
- for ( VVector::const_iterator i = features.begin();
- i != features.end();
- i++, j++ )
- {
- const NICE::Vector & x = *i;
- if ( lfdimension < 0 ) lfdimension = ( int ) x.size();
- else assert ( lfdimension == ( int ) x.size() );
- NICE::Vector *v = new NICE::Vector ( x );
- if ( usecolorfeats )
- v->append ( cfeatures[j] );
- Example tmp = Example ( v );
- tmp.x = ( int ) positions[j][0];
- tmp.y = ( int ) positions[j][1];
- tmp.width = ( int ) ( 16.0 * positions[j][2] );
- tmp.height = tmp.width;
- tmp.scale = positions[j][2];
- scales.insert ( positions[j][2] );
- pce.push_back ( pair<int, Example> ( 0, tmp ) );
- }
- //////////////////
- // PCA anwenden //
- //////////////////
- pce.filename = currentFile;
- if ( usepca )
- {
- doPCA ( pce );
- lfdimension = dim;
- }
- //////////////////
- // BoV anwenden //
- //////////////////
- if ( norm )
- normalize ( pce );
- if ( usegmm || usekmeans )
- {
- if ( !usepca && !norm )
- normalize ( pce );
- convertLowToHigh ( pce );
- smoothHL ( pce );
- lfdimension = gaussians;
- }
- /////////////////////////////////////////
- // Wahrscheinlichkeitskarten erstellen //
- /////////////////////////////////////////
- int klassen = probabilities.channels();
- NICE::MultiChannelImageT<double> preMap ( xsize, ysize, klassen*scales.size() );
- // initialisieren
- for ( int y = 0 ; y < ysize ; y++ )
- for ( int x = 0 ; x < xsize ; x++ )
- {
- // alles zum Hintergrund machen
- segresult.setPixel ( x, y, 0 );
- // Die Wahrscheinlichkeitsmaps auf 0 initialisieren
- for ( int i = 0 ; i < ( int ) probabilities.channels(); i++ )
- {
- probabilities[i](x,y) = 0.0;
- }
- for ( int j = 0; j < ( int ) preMap.channels(); j++ )
- {
- preMap[j](x,y) = 0.0;
- }
- }
- // Die Wahrscheinlichkeitsmaps mit den einzelnen Wahrscheinlichkeiten je Skalierung füllen
- int scalesize = scales.size();
- // Globale Häufigkeiten akkumulieren
- FullVector fV ( ( int ) probabilities.channels() );
- for ( int i = 0; i < fV.size(); i++ )
- fV[i] = 0.0;
- // read allowed classes
- string cndir = conf->gS ( "SemSegCsurka", "cndir", "" );
- int classes = ( int ) probabilities.channels();
- vector<int> useclass ( classes, 1 );
- std::vector< std::string > list;
- StringTools::split ( currentFile, '/', list );
- string orgname = list.back();
- if ( cndir != "" )
- {
- useclass = vector<int> ( classes, 0 );
- ifstream infile ( ( cndir + "/" + orgname + ".dat" ).c_str() );
- while ( !infile.eof() && infile.good() )
- {
- int tmp;
- infile >> tmp;
- if ( tmp >= 0 && tmp < classes )
- {
- useclass[tmp] = 1;
- }
- }
- }
- #ifdef UNCERTAINTY
- std::vector<FloatImage> uncert;
- std::vector<FloatImage> gpUncertainty;
- std::vector<FloatImage> gpMean;
- std::vector<FloatImage> gpMeanRatio;
- std::vector<FloatImage> gpWeightAll;
- std::vector<FloatImage> gpWeightRatio;
- // std::vector<FloatImage> gpImpactAll;
- // std::vector<FloatImage> gpImpactRatio;
-
- //pre-allocate storage -- one image per scale and method
- for(int s = 0; s < scalesize; s++)
- {
- uncert.push_back(FloatImage(xsize, ysize));
- uncert[s].set(0.0);
-
- gpUncertainty.push_back(FloatImage(xsize, ysize));
- gpMean.push_back(FloatImage(xsize, ysize));
- gpMeanRatio.push_back(FloatImage(xsize, ysize));
- gpWeightAll.push_back(FloatImage(xsize, ysize));
- gpWeightRatio.push_back(FloatImage(xsize, ysize));
- /* gpImpactAll.push_back(FloatImage(xsize, ysize));
- gpImpactRatio.push_back(FloatImage(xsize, ysize)); */
-
- gpUncertainty[s].set(0.0);
- gpMean[s].set(0.0);
- gpMeanRatio[s].set(0.0);
- gpWeightAll[s].set(0.0);
- gpWeightRatio[s].set(0.0);
- // gpImpactAll[s].set(0.0);
- // gpImpactRatio[s].set(0.0);
- }
-
- ColorImage imgrgb ( xsize, ysize );
- std::string s;
- std::stringstream out;
- std::vector< std::string > list2;
- StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
- out << "uncertainty/" << list2.back();
-
- double maxu = -numeric_limits<double>::max();
- double minu = numeric_limits<double>::max();
-
- double gpNoise = conf->gD("GPHIK", "noise", 0.01);
-
- #endif
- #ifdef UNCERTAINTY
- std::cerr << "compute values for uncertainty stuff as well" << std::endl;
- #endif
-
- if ( classifier != NULL )
- {
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen: classifier != NULL" << endl;
- #pragma omp parallel for
- for ( int s = 0; s < scalesize; s++ )
- {
- #pragma omp parallel for
- for ( int i = s; i < ( int ) pce.size(); i += scalesize )
- {
- ClassificationResult r = classifier->classify ( pce[i].second );
- #ifdef UNCERTAINTY
- //we need this if we want to compute GP-AL-measure lateron
- double minMeanAbs ( numeric_limits<double>::max() );
- double maxMeanAbs ( 0.0 );
- double sndMaxMeanAbs ( 0.0 );
- #endif
-
- for ( int j = 0 ; j < r.scores.size(); j++ )
- {
- if ( useclass[j] == 0 )
- continue;
- fV[j] += r.scores[j];
- preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
-
- #ifdef UNCERTAINTY
- //check whether we found a class with higher smaller abs mean than the current minimum
- if (abs(r.scores[j]) < minMeanAbs)
- minMeanAbs = abs(r.scores[j]);
- //check for larger abs mean as well
- if (abs(r.scores[j]) > maxMeanAbs)
- {
- sndMaxMeanAbs = maxMeanAbs;
- maxMeanAbs = abs(r.scores[j]);
- }
- // and also for the second highest mean of all classes
- else if (abs(r.scores[j]) > sndMaxMeanAbs)
- {
- sndMaxMeanAbs = abs(r.scores[j]);
- }
- #endif
- }
- /*if(r.uncertainty < 0.0)
- {
- cerr << "uncertainty: " << r.uncertainty << endl;
- pce[i].second.svec->store(cerr);
- cerr << endl;
- exit(-1);
- }*/
- #ifdef UNCERTAINTY
- uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
- maxu = std::max ( r.uncertainty, maxu );
- minu = std::min ( r.uncertainty, minu );
-
-
- double firstTerm (1.0 / sqrt(r.uncertainty+gpNoise));
-
- //compute the heuristic GP-UNCERTAINTY, as proposed by Kapoor et al. in IJCV 2010
- // GP-UNCERTAINTY : |mean| / sqrt(var^2 + gpnoise^2)
- gpUncertainty[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs*firstTerm; //firstTerm = 1.0 / sqrt(r.uncertainty+gpNoise))
-
- // compute results when we take the lowest mean value of all classes
- gpMean[s] ( pce[i].second.x, pce[i].second.y ) = minMeanAbs;
-
- //look at the difference in the absolut mean values for the most plausible class
- // and the second most plausible class
- gpMeanRatio[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs - sndMaxMeanAbs;
-
- //compute the weight in the alpha-vector for every sample after assuming it to be
- // added to the training set.
- // Thereby, we measure its "importance" for the current model
- //
- //double firstTerm is already computed
- //
- //the second term is only needed when computing impacts
- //double secondTerm; //this is the nasty guy :/
-
- //--- compute the third term
- // this is the difference between predicted label and GT label
- std::vector<double> diffToPositive; diffToPositive.clear();
- std::vector<double> diffToNegative; diffToNegative.clear();
- double diffToNegativeSum(0.0);
-
- for ( int j = 0 ; j < r.scores.size(); j++ )
- {
- if ( useclass[j] == 0 )
- continue;
- // look at the difference to plus 1
- diffToPositive.push_back(abs(r.scores[j] - 1));
- // look at the difference to -1
- diffToNegative.push_back(abs(r.scores[j] + 1));
- //sum up the difference to -1
- diffToNegativeSum += abs(r.scores[j] - 1);
- }
- //let's subtract for every class its diffToNegative from the sum, add its diffToPositive,
- //and use this as the third term for this specific class.
- //the final value is obtained by minimizing over all classes
- //
- // originally, we minimize over all classes after building the final score
- // however, the first and the second term do not depend on the choice of
- // y*, therefore we minimize here already
- double thirdTerm (numeric_limits<double>::max()) ;
- for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
- {
- double tmpVal ( diffToPositive[tmpCnt] + (diffToNegativeSum-diffToNegative[tmpCnt]) );
- if (tmpVal < thirdTerm)
- thirdTerm = tmpVal;
- }
- gpWeightAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm;
-
- //now look on the ratio of the resulting weights for the most plausible
- // against the second most plausible class
- double thirdTermMostPlausible ( 0.0 ) ;
- double thirdTermSecondMostPlausible ( 0.0 ) ;
- for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
- {
- if (diffToPositive[tmpCnt] > thirdTermMostPlausible)
- {
- thirdTermSecondMostPlausible = thirdTermMostPlausible;
- thirdTermMostPlausible = diffToPositive[tmpCnt];
- }
- else if (diffToPositive[tmpCnt] > thirdTermSecondMostPlausible)
- {
- thirdTermSecondMostPlausible = diffToPositive[tmpCnt];
- }
- }
- //compute the resulting score
- gpWeightRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm;
- //finally, look for this feature how it would affect to whole model (summarized by weight-vector alpha), if we would
- //use it as an additional training example
- //TODO this would be REALLY computational demanding. Do we really want to do this?
- // gpImpactAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm*secondTerm;
- // gpImpactRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm*secondTerm;
- #endif
- }
- }
- }
- else
- {
- //#pragma omp parallel for
- for ( int s = 0; s < scalesize; s++ )
- {
- //#pragma omp parallel for
- for ( int i = s; i < ( int ) pce.size(); i += scalesize )
- {
- ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
-
- #ifdef UNCERTAINTY
- //we need this if we want to compute GP-AL-measure lateron
- double minMeanAbs ( numeric_limits<double>::max() );
- double maxMeanAbs ( 0.0 );
- double sndMaxMeanAbs ( 0.0 );
- #endif
-
- for ( int j = 0 ; j < ( int ) r.scores.size(); j++ )
- {
- if ( useclass[j] == 0 )
- continue;
- fV[j] += r.scores[j];
- preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
-
- #ifdef UNCERTAINTY
- //check whether we found a class with higher smaller abs mean than the current minimum
- if (abs(r.scores[j]) < minMeanAbs)
- minMeanAbs = abs(r.scores[j]);
- //check for larger abs mean as well
- if (abs(r.scores[j]) > maxMeanAbs)
- {
- sndMaxMeanAbs = maxMeanAbs;
- maxMeanAbs = abs(r.scores[j]);
- }
- // and also for the second highest mean of all classes
- else if (abs(r.scores[j]) > sndMaxMeanAbs)
- {
- sndMaxMeanAbs = abs(r.scores[j]);
- }
- #endif
- }
- #ifdef UNCERTAINTY
- uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
- maxu = std::max ( r.uncertainty, maxu );
- minu = std::min ( r.uncertainty, minu );
-
-
- double firstTerm (1.0 / sqrt(r.uncertainty+gpNoise));
-
- //compute the heuristic GP-UNCERTAINTY, as proposed by Kapoor et al. in IJCV 2010
- // GP-UNCERTAINTY : |mean| / sqrt(var^2 + gpnoise^2)
- gpUncertainty[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs*firstTerm; //firstTerm = 1.0 / sqrt(r.uncertainty+gpNoise))
-
- // compute results when we take the lowest mean value of all classes
- gpMean[s] ( pce[i].second.x, pce[i].second.y ) = minMeanAbs;
-
- //look at the difference in the absolut mean values for the most plausible class
- // and the second most plausible class
- gpMeanRatio[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs - sndMaxMeanAbs;
-
- //compute the weight in the alpha-vector for every sample after assuming it to be
- // added to the training set.
- // Thereby, we measure its "importance" for the current model
- //
- //double firstTerm is already computed
- //
- //the second term is only needed when computing impacts
- //double secondTerm; //this is the nasty guy :/
-
- //--- compute the third term
- // this is the difference between predicted label and GT label
- std::vector<double> diffToPositive; diffToPositive.clear();
- std::vector<double> diffToNegative; diffToNegative.clear();
- double diffToNegativeSum(0.0);
-
- for ( int j = 0 ; j < fV.size(); j++ )
- {
- if ( useclass[j] == 0 )
- continue;
- // look at the difference to plus 1
- diffToPositive.push_back(abs(r.scores[j] - 1));
- // look at the difference to -1
- diffToNegative.push_back(abs(r.scores[j] + 1));
- //sum up the difference to -1
- diffToNegativeSum += abs(r.scores[j] - 1);
- }
- //let's subtract for every class its diffToNegative from the sum, add its diffToPositive,
- //and use this as the third term for this specific class.
- //the final value is obtained by minimizing over all classes
- //
- // originally, we minimize over all classes after building the final score
- // however, the first and the second term do not depend on the choice of
- // y*, therefore we minimize here already
- double thirdTerm (numeric_limits<double>::max()) ;
- for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
- {
- double tmpVal ( diffToPositive[tmpCnt] + (diffToNegativeSum-diffToNegative[tmpCnt]) );
- if (tmpVal < thirdTerm)
- thirdTerm = tmpVal;
- }
- gpWeightAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm;
-
- //now look on the ratio of the resulting weights for the most plausible
- // against the second most plausible class
- double thirdTermMostPlausible ( 0.0 ) ;
- double thirdTermSecondMostPlausible ( 0.0 ) ;
- for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
- {
- if (diffToPositive[tmpCnt] > thirdTermMostPlausible)
- {
- thirdTermSecondMostPlausible = thirdTermMostPlausible;
- thirdTermMostPlausible = diffToPositive[tmpCnt];
- }
- else if (diffToPositive[tmpCnt] > thirdTermSecondMostPlausible)
- {
- thirdTermSecondMostPlausible = diffToPositive[tmpCnt];
- }
- }
- //compute the resulting score
- gpWeightRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm;
- //finally, look for this feature how it would affect to whole model (summarized by weight-vector alpha), if we would
- //use it as an additional training example
- //TODO this would be REALLY computational demanding. Do we really want to do this?
- // gpImpactAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm*secondTerm;
- // gpImpactRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm*secondTerm;
- #endif
- }
- }
- }
- #ifdef UNCERTAINTY
- std::cerr << "uncertainty values and derived scores successfully computed" << std::endl;
- #endif
- #ifdef UNCERTAINTY
- cout << "maxvdirect: " << maxu << " minvdirect: " << minu << endl;
- //pre-allocate the image for filtering lateron
- FloatImage gaussUncert ( xsize, ysize );
-
- //just store the first scale
- ICETools::convertToRGB ( uncert[0], imgrgb );
- imgrgb.write ( out.str() + "rough.ppm" );
-
- //pre-allocate memory for filtering of scales
- FloatImage gaussGPUncertainty ( xsize, ysize );
- FloatImage gaussGPMean ( xsize, ysize );
- FloatImage gaussGPMeanRatio( xsize, ysize );
- FloatImage gaussGPWeightAll ( xsize, ysize );
- FloatImage gaussGPWeightRatio ( xsize, ysize );
-
- //just store the first scale for every method
- ICETools::convertToRGB ( gpUncertainty[0], imgrgb );
- imgrgb.write ( out.str() + "gpUncertainty.ppm" );
- ICETools::convertToRGB ( gpMean[0], imgrgb );
- imgrgb.write ( out.str() + "gpMean.ppm" );
- ICETools::convertToRGB ( gpMeanRatio[0], imgrgb );
- imgrgb.write ( out.str() + "gpMeanRatio.ppm" );
- ICETools::convertToRGB ( gpWeightAll[0], imgrgb );
- imgrgb.write ( out.str() + "gpWeightAll.ppm" );
- ICETools::convertToRGB ( gpWeightRatio[0], imgrgb );
- imgrgb.write ( out.str() + "gpWeightRatio.ppm" );
-
- #endif
- vector<double> scalesVec;
- for ( set<double>::const_iterator iter = scales.begin();
- iter != scales.end();
- ++iter )
- {
- scalesVec.push_back ( *iter );
- }
- #undef VISSEMSEG
- #ifdef VISSEMSEG
- for ( int j = 0 ; j < ( int ) preMap.channels(); j++ )
- {
- cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
- NICE::Matrix tmp ( preMap.ysize, preMap.xsize );
- double maxval = 0.0;
- for ( int y = 0; y < preMap.ysize; y++ )
- for ( int x = 0; x < preMap.xsize; x++ )
- {
- double val = preMap.get ( x, y, j );
- tmp ( y, x ) = val;
- maxval = std::max ( val, maxval );
- }
- NICE::ColorImage imgrgb ( preMap.xsize, preMap.ysize );
- ICETools::convertToRGB ( tmp, imgrgb );
- cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
- //Show ( ON, imgrgb, cn.text ( j ) );
- //showImage(imgrgb, "Ergebnis");
- std::string s;
- std::stringstream out;
- out << "tmpprebmap" << j << ".ppm";
- s = out.str();
- imgrgb.writePPM ( s );
- //getchar();
- }
- #endif
- // Gaußfiltern
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> Gaussfiltern" << endl;
- for ( int s = 0; s < scalesize; s++ )
- {
- double sigma = sigmaweight * 16.0 * scalesVec[s];
- cerr << "sigma: " << sigma << endl;
- #pragma omp parallel for
- for ( int i = 0; i < klassen; i++ )
- {
- if ( forbidden_classes.find ( i ) != forbidden_classes.end() )
- {
- continue;
- }
- int pos = i + s * klassen;
- double maxval = preMap[pos](0,0);
- double minval = maxval;
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- maxval = std::max ( maxval, preMap[pos](x,y) );
- minval = std::min ( minval, preMap[pos](x,y) );
- }
- }
- NICE::FloatImage dblImg ( xsize, ysize );
- NICE::FloatImage gaussImg ( xsize, ysize );
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- dblImg.setPixel ( x, y, preMap[pos](x,y) );
- }
- }
- filterGaussSigmaApproximate<float, float, float> ( dblImg, sigma, &gaussImg );
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- preMap[pos](x,y) = gaussImg.getPixel ( x, y );
- }
- }
- }
- #ifdef UNCERTAINTY
- filterGaussSigmaApproximate<float, float, float> ( uncert[s], sigma, &gaussUncert );
- uncert[s] = gaussUncert;
-
- //apply the gauss-filtering to all scales of every method
- filterGaussSigmaApproximate<float, float, float> ( gpUncertainty[s], sigma, &gaussGPUncertainty );
- filterGaussSigmaApproximate<float, float, float> ( gpMean[s], sigma, &gaussGPMean );
- filterGaussSigmaApproximate<float, float, float> ( gpMeanRatio[s], sigma, &gaussGPMeanRatio );
- filterGaussSigmaApproximate<float, float, float> ( gpWeightAll[s], sigma, &gaussGPWeightAll );
- filterGaussSigmaApproximate<float, float, float> ( gpWeightRatio[s], sigma, &gaussGPWeightRatio );
-
- gpUncertainty[s] = gaussGPUncertainty;
- gpMean[s] = gaussGPMean;
- gpMeanRatio[s] = gaussGPMeanRatio;
- gpWeightAll[s] = gaussGPWeightAll;
- gpWeightRatio[s] = gaussGPWeightRatio;
- #endif
- }
- // Zusammenfassen und auswerten
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> zusammenfassen und auswerten" << endl;
- //#pragma omp parallel for
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
- {
- double prob = 0.0;
- for ( int s = 0; s < ( int ) scalesize; s++ )
- {
- prob += preMap.get ( x, y, j + s * klassen );
- }
- double val = prob / ( double ) ( scalesize );
- probabilities.set ( x, y, val, j );
- }
- }
- }
-
- #ifdef UNCERTAINTY
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int s = 0; s < ( int ) scalesize; s++ )
- {
- gaussUncert(x,y) += uncert[s](x,y);
- //and for the other methods as well
- gaussGPUncertainty(x,y) += gpUncertainty[s](x,y);
- gaussGPMean(x,y) += gpMean[s](x,y);
- gaussGPMeanRatio(x,y) += gpMeanRatio[s](x,y);
- gaussGPWeightAll(x,y) += gpWeightAll[s](x,y);
- gaussGPWeightRatio(x,y) += gpWeightRatio[s](x,y);
- }
- gaussUncert(x,y)/=scalesize;
- //and for the other methods as well
- gaussGPUncertainty(x,y)/=scalesize;
- gaussGPMean(x,y)/=scalesize;
- gaussGPMeanRatio(x,y)/=scalesize;
- gaussGPWeightAll(x,y)/=scalesize;
- gaussGPWeightRatio(x,y)/=scalesize;
- }
- }
- maxu = -numeric_limits<double>::max();
- minu = numeric_limits<double>::max();
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- double val = uncert[0] ( x, y );
- maxu = std::max ( val, maxu );
- minu = std::min ( val, minu );
- }
- }
- cout << "maxvo = " << maxu << " minvo = " << minu << endl;
- maxu = -numeric_limits<float>::max();
- minu = numeric_limits<float>::max();
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- double val = gaussUncert ( x, y );
- maxu = std::max ( val, maxu );
- minu = std::min ( val, minu );
- }
- }
- cout << "maxvf = " << maxu << " minvf = " << minu << endl;
-
- gaussUncert(0,0) = 0.0;
- gaussUncert(0,1) = 0.04;
- ICETools::convertToRGB ( gaussUncert, imgrgb );
- imgrgb.write ( out.str() + "filtered.ppm" );
-
- ICETools::convertToRGB ( gaussGPUncertainty, imgrgb );
- imgrgb.write ( out.str() + "gpUncertaintyFiltered.ppm" );
- ICETools::convertToRGB ( gaussGPMean, imgrgb );
- imgrgb.write ( out.str() + "gpMeanFiltered.ppm" );
- ICETools::convertToRGB ( gaussGPMeanRatio, imgrgb );
- imgrgb.write ( out.str() + "gpMeanRatioFiltered.ppm" );
- ICETools::convertToRGB ( gaussGPWeightAll, imgrgb );
- imgrgb.write ( out.str() + "gpWeightAllFiltered.ppm" );
- ICETools::convertToRGB ( gaussGPWeightRatio, imgrgb );
- imgrgb.write ( out.str() + "gpWeightRatioFiltered.ppm" );
-
- #endif
- #undef VISSEMSEG
- #ifdef VISSEMSEG
- std::string s;
- std::stringstream out;
- std::vector< std::string > list2;
- StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
- out << "probmaps/" << list2.back() << ".probs";
- s = out.str();
- probabilities.store ( s );
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
- {
- cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
- double maxval = 0.0;
- for ( int y = 0; y < probabilities.ysize; y++ )
- for ( int x = 0; x < probabilities.xsize; x++ )
- {
- double val = probabilities.get ( x, y, j );
- tmp ( y, x ) = val;
- maxval = std::max ( val, maxval );
- }
- NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
- ICETools::convertToRGB ( tmp, imgrgb );
- cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
- //Show ( ON, imgrgb, cn.text ( j ) );
- //showImage(imgrgb, "Ergebnis");
- std::string s;
- std::stringstream out;
- out << "tmp" << j << ".ppm";
- s = out.str();
- imgrgb.writePPM ( s );
- //getchar();
- }
- #endif
- if ( useregions )
- {
- if ( bestclasses > 0 )
- {
- PSSImageLevelPrior pss ( 0, bestclasses, 0.2 );
- pss.setPrior ( fV );
- pss.postprocess ( segresult, probabilities );
- }
- //Regionen ermitteln
- int regionsize = seg->segRegions ( img, mask );
- Regionen.clear();
- vector<vector <double> > regionprob;
- #ifdef UNCERTAINTY
- std::vector<double> regionUncert;
-
- std::vector<double> regionGPUncertainty;
- std::vector<double> regionGPMean;
- std::vector<double> regionGPMeanRatio;
- std::vector<double> regionGPWeightAll;
- std::vector<double> regionGPWeightRatio;
- #endif
- // Wahrscheinlichkeiten für jede Region initialisieren
- for ( int i = 0; i < regionsize; i++ )
- {
- vector<double> tmp;
- for ( int j = 0; j < ( int ) probabilities.channels(); j++ )
- {
- tmp.push_back ( 0.0 );
- }
- regionprob.push_back ( tmp );
- Regionen.push_back ( pair<int, Example> ( 0, Example() ) );
- #ifdef UNCERTAINTY
- regionUncert.push_back ( 0.0 );
-
- regionGPUncertainty.push_back ( 0.0 );
- regionGPMean.push_back ( 0.0 );
- regionGPMeanRatio.push_back ( 0.0 );
- regionGPWeightAll.push_back ( 0.0 );
- regionGPWeightRatio.push_back ( 0.0 );
- #endif
- }
- // Wahrscheinlichkeiten für Regionen bestimmen
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- int pos = mask ( x, y );
- Regionen[pos].second.weight += 1.0;
- Regionen[pos].second.x += x;
- Regionen[pos].second.y += y;
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
- {
- double val = probabilities.get ( x, y, j );
- regionprob[pos][j] += val;
- }
- #ifdef UNCERTAINTY
- regionUncert[pos] += gaussUncert ( x, y );
-
- regionGPUncertainty[pos] += gaussGPUncertainty ( x, y );
- regionGPMean[pos] += gaussGPMean ( x, y );
- regionGPMeanRatio[pos] += gaussGPMeanRatio ( x, y );
- regionGPWeightAll[pos] += gaussGPWeightAll ( x, y );
- regionGPWeightRatio[pos] += gaussGPWeightRatio ( x, y );
- #endif
- }
- }
- /*
- cout << "regions: " << regionsize << endl;
- cout << "outfeats: " << endl;
- for(int j = 0; j < regionprob.size(); j++)
- {
- for(int i = 0; i < regionprob[j].size(); i++)
- {
- cout << regionprob[j][i] << " ";
- }
- cout << endl;
- }
- cout << endl;
- getchar();*/
- // beste Wahrscheinlichkeit je Region wählen
- for ( int i = 0; i < regionsize; i++ )
- {
- if ( Regionen[i].second.weight > 0 )
- {
- Regionen[i].second.x /= ( int ) Regionen[i].second.weight;
- Regionen[i].second.y /= ( int ) Regionen[i].second.weight;
- }
- double maxval = -numeric_limits<double>::max();
- int maxpos = 0;
- for ( int j = 0 ; j < ( int ) regionprob[i].size(); j++ )
- {
- if ( forbidden_classes.find ( j ) != forbidden_classes.end() )
- continue;
- regionprob[i][j] /= Regionen[i].second.weight;
- if ( maxval < regionprob[i][j] )
- {
- maxval = regionprob[i][j];
- maxpos = j;
- }
- probabilities.set ( Regionen[i].second.x, Regionen[i].second.y, regionprob[i][j], j );
- }
- Regionen[i].first = maxpos;
- #ifdef UNCERTAINTY
- regionUncert[i] /= Regionen[i].second.weight;
-
- regionGPUncertainty[i] /= Regionen[i].second.weight;
- regionGPMean[i] /= Regionen[i].second.weight;
- regionGPMeanRatio[i] /= Regionen[i].second.weight;
- regionGPWeightAll[i] /= Regionen[i].second.weight;
- regionGPWeightRatio[i] /= Regionen[i].second.weight;
- #endif
- }
- // Pixel jeder Region labeln
- for ( int y = 0; y < ( int ) mask.cols(); y++ )
- {
- for ( int x = 0; x < ( int ) mask.rows(); x++ )
- {
- int pos = mask ( x, y );
- segresult.setPixel ( x, y, Regionen[pos].first );
- #ifdef UNCERTAINTY
- gaussUncert ( x, y ) = regionUncert[pos];
-
- gaussGPUncertainty ( x, y ) = regionGPUncertainty[pos];
- gaussGPMean ( x, y ) = regionGPMean[pos];
- gaussGPMeanRatio ( x, y ) = regionGPMeanRatio[pos];
- gaussGPWeightAll ( x, y ) = regionGPWeightAll[pos];
- gaussGPWeightRatio ( x, y ) = regionGPWeightRatio[pos];
- #endif
- }
- }
- #ifdef UNCERTAINTY
- maxu = -numeric_limits<float>::max();
- minu = numeric_limits<float>::max();
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- //float val = uncert(x,y);
- double val = gaussUncert ( x, y );
- maxu = std::max ( val, maxu );
- minu = std::min ( val, minu );
- }
- }
- cout << "maxvr = " << maxu << " minvr = " << minu << endl;
- // uncert(0,0) = 1;
- // uncert(0,1) = 0;
- ICETools::convertToRGB ( gaussUncert, imgrgb );
- imgrgb.write ( out.str() + "region.ppm" );
-
- ICETools::convertToRGB ( gaussGPUncertainty, imgrgb );
- imgrgb.write ( out.str() + "gpUncertaintyRegion.ppm" );
- ICETools::convertToRGB ( gaussGPMean, imgrgb );
- imgrgb.write ( out.str() + "gpMeanRegion.ppm" );
- ICETools::convertToRGB ( gaussGPMeanRatio, imgrgb );
- imgrgb.write ( out.str() + "gpMeanRatioRegion.ppm" );
- ICETools::convertToRGB ( gaussGPWeightAll, imgrgb );
- imgrgb.write ( out.str() + "gpWeightAllRegion.ppm" );
- ICETools::convertToRGB ( gaussGPWeightRatio, imgrgb );
- imgrgb.write ( out.str() + "gpWeightRatioRegion.ppm" );
- #endif
- #undef WRITEREGIONS
- #ifdef WRITEREGIONS
- RegionGraph rg;
- seg->getGraphRepresentation ( img, mask, rg );
- for ( uint pos = 0; pos < regionprob.size(); pos++ )
- {
- rg[pos]->setProbs ( regionprob[pos] );
- }
- std::string s;
- std::stringstream out;
- std::vector< std::string > list;
- StringTools::split ( Globals::getCurrentImgFN (), '/', list );
- out << "rgout/" << list.back() << ".graph";
- string writefile = out.str();
- rg.write ( writefile );
- #endif
- }
- else
- {
- PSSImageLevelPrior pss ( 1, 4, 0.2 );
- pss.setPrior ( fV );
- pss.postprocess ( segresult, probabilities );
- }
- // Saubermachen:
- clog << "[log] SemSegCsurka::classifyregions: sauber machen" << endl;
- for ( int i = 0; i < ( int ) pce.size(); i++ )
- {
- pce[i].second.clean();
- }
- pce.clear();
- if ( cSIFT != NULL )
- delete cSIFT;
- if ( writeFeats != NULL )
- delete writeFeats;
- if ( readFeats != NULL )
- delete readFeats;
- getFeats = NULL;
- }
- void SemSegCsurka::semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities )
- {
- Examples regions;
- NICE::Matrix regionmask;
- classifyregions ( ce, segresult, probabilities, regions, regionmask );
- if ( userellocprior || srg != NULL || gcopt != NULL )
- {
- if ( userellocprior )
- relloc->postprocess ( regions, probabilities );
- if ( srg != NULL )
- srg->optimizeShape ( regions, regionmask, probabilities );
- if ( gcopt != NULL )
- gcopt->optimizeImage ( regions, regionmask, probabilities );
- // Pixel jeder Region labeln
- for ( int y = 0; y < ( int ) regionmask.cols(); y++ )
- {
- for ( int x = 0; x < ( int ) regionmask.rows(); x++ )
- {
- int pos = regionmask ( x, y );
- segresult.setPixel ( x, y, regions[pos].first );
- }
- }
- }
- #ifndef NOVISUAL
- #undef VISSEMSEG
- #ifdef VISSEMSEG
- // showImage(img);
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
- {
- cout << "klasse: " << j << " " << cn.text ( j ) << endl;
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
- double maxval = -numeric_limits<double>::max();
- for ( int y = 0; y < probabilities.ysize; y++ )
- for ( int x = 0; x < probabilities.xsize; x++ )
- {
- double val = probabilities.get ( x, y, j );
- tmp ( y, x ) = val;
- maxval = std::max ( val, maxval );
- }
- NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
- ICETools::convertToRGB ( tmp, imgrgb );
- cout << "maxval = " << maxval << " for class " << cn.text ( j ) << endl;
- Show ( ON, imgrgb, cn.text ( j ) );
- imgrgb.Write ( "tmp.ppm" );
- getchar();
- }
- #endif
- #endif
- }
|