testSemanticSegmentation.cpp 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. // Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config <CONFIGFILE>
  2. /**
  3. * @file testSemanticSegmentation.cpp
  4. * @brief test semantic segmentation routines
  5. * @author Erik Rodner
  6. * @date 03/20/2008
  7. */
  8. #ifdef NICE_USELIB_OPENMP
  9. #include <omp.h>
  10. #endif
  11. #include "core/basics/Config.h"
  12. #include "core/basics/StringTools.h"
  13. #include <vislearning/baselib/ICETools.h>
  14. #include <objrec-froehlichexp/semseg/SemanticSegmentation.h>
  15. #include <objrec-froehlichexp/semseg/SemSegLocal.h>
  16. #include <objrec-froehlichexp/semseg/SemSegCsurka.h>
  17. #include <objrec-froehlichexp/semseg/SemSegRegionBased.h>
  18. #include <objrec-froehlichexp/semseg/SemSegContextTree.h>
  19. #include <fast-hik/ResourceStatistics.h>
  20. #include <fstream>
  21. using namespace OBJREC;
  22. using namespace NICE;
  23. using namespace std;
  24. void updateMatrix( const NICE::Image & img, const NICE::Image & gt,
  25. NICE::Matrix & M, const set<int> & forbidden_classes )
  26. {
  27. double subsamplex = gt.width() / ( double )img.width();
  28. double subsampley = gt.height() / ( double )img.height();
  29. for ( int y = 0 ; y < gt.height() ; y++ )
  30. for ( int x = 0 ; x < gt.width() ; x++ )
  31. {
  32. int xx = ( int )( x / subsamplex );
  33. int yy = ( int )( y / subsampley );
  34. if ( xx < 0 ) xx = 0;
  35. if ( yy < 0 ) yy = 0;
  36. if ( xx > img.width() - 1 ) xx = img.width() - 1;
  37. if ( yy > img.height() - 1 ) yy = img.height() - 1;
  38. int cimg = img.getPixel( xx, yy );
  39. int gimg = gt.getPixel( x, y );
  40. if ( forbidden_classes.find( gimg ) == forbidden_classes.end() )
  41. {
  42. M( gimg, cimg )++;
  43. }
  44. }
  45. }
  46. /**
  47. test semantic segmentation routines
  48. */
  49. int main( int argc, char **argv )
  50. {
  51. std::set_terminate( __gnu_cxx::__verbose_terminate_handler );
  52. Config conf( argc, argv );
  53. ResourceStatistics rs;
  54. bool show_result = conf.gB( "debug", "show_results", false );
  55. bool write_results = conf.gB( "debug", "write_results", false );
  56. bool write_results_pascal = conf.gB( "debug", "write_results_pascal", false );
  57. std::string resultdir = conf.gS( "debug", "resultdir", "." );
  58. if ( write_results )
  59. {
  60. cerr << "Writing Results to " << resultdir << endl;
  61. }
  62. MultiDataset md( &conf );
  63. const ClassNames & classNames = md.getClassNames( "train" );
  64. string method = conf.gS( "main", "method", "SSCsurka" );
  65. SemanticSegmentation *semseg = NULL;
  66. if ( method == "SSCsurka" )
  67. {
  68. semseg = new SemSegCsurka( &conf, &md );
  69. }
  70. else if ( method == "SSContext" )
  71. {
  72. semseg = new SemSegContextTree( &conf, &md );
  73. }
  74. //SemanticSegmentation *semseg = new SemSegLocal ( &conf, &md );
  75. //SemanticSegmentation *semseg = new SemSegSTF ( &conf, &md );
  76. //SemanticSegmentation *semseg = new SemSegRegionBased(&conf, &md);
  77. const LabeledSet *testFiles = md["test"];
  78. NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 );
  79. M.set( 0 );
  80. set<int> forbidden_classes;
  81. std::string forbidden_classes_s = conf.gS( "analysis", "forbidden_classes", "" );
  82. classNames.getSelection( forbidden_classes_s, forbidden_classes );
  83. ProgressBar pb( "Semantic Segmentation Analysis" );
  84. pb.show();
  85. int fileno = 0;
  86. LOOP_ALL_S( *testFiles )
  87. {
  88. EACH_INFO( classno, info );
  89. std::string file = info.img();
  90. NICE::Image lm;
  91. NICE::MultiChannelImageT<double> probabilities;
  92. if ( info.hasLocalizationInfo() )
  93. {
  94. const LocalizationResult *l_gt = info.localization();
  95. lm.resize( l_gt->xsize, l_gt->ysize );
  96. lm.set( 0 );
  97. l_gt->calcLabeledImage( lm, classNames.getBackgroundClass() );
  98. }
  99. semseg->semanticseg( file, lm, probabilities );
  100. fprintf( stderr, "testSemanticSegmentation: Segmentation finished !\n" );
  101. NICE::Image lm_gt;
  102. if ( info.hasLocalizationInfo() )
  103. {
  104. const LocalizationResult *l_gt = info.localization();
  105. lm_gt.resize( l_gt->xsize, l_gt->ysize );
  106. lm_gt.set( 0 );
  107. fprintf( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" );
  108. l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() );
  109. }
  110. std::string fname = StringTools::baseName( file, false );
  111. if ( write_results_pascal )
  112. {
  113. NICE::Image pascal_lm( lm.width(), lm.height() );
  114. int backgroundClass = classNames.getBackgroundClass();
  115. for ( int y = 0 ; y < lm.height(); y++ )
  116. for ( int x = 0 ; x < lm.width(); x++ )
  117. {
  118. int v = lm.getPixel( x, y );
  119. if ( v == backgroundClass )
  120. pascal_lm.setPixel( x, y, 255 );
  121. else
  122. pascal_lm.setPixel( x, y, 255 - v - 1 );
  123. }
  124. char filename[1024];
  125. char *format = ( char * )"pgm";
  126. sprintf( filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format );
  127. pascal_lm.write( filename );
  128. }
  129. if ( show_result || write_results )
  130. {
  131. NICE::ColorImage orig( file );
  132. NICE::ColorImage rgb;
  133. NICE::ColorImage rgb_gt;
  134. classNames.labelToRGB( lm, rgb );
  135. classNames.labelToRGB( lm_gt, rgb_gt );
  136. if ( write_results )
  137. {
  138. char filename[1024];
  139. char *format = ( char * )"ppm";
  140. sprintf( filename, "%06d.%s", fileno, format );
  141. std::string origfilename = resultdir + "/orig_" + string( filename );
  142. cerr << "Writing to file " << origfilename << endl;
  143. orig.write( origfilename );
  144. rgb.write( resultdir + "/result_" + string( filename ) );
  145. rgb_gt.write( resultdir + "/groundtruth_" + string( filename ) );
  146. }
  147. if ( show_result )
  148. {
  149. #ifndef NOVISUAL
  150. showImage( rgb, "Result" );
  151. showImage( rgb_gt, "Groundtruth" );
  152. showImage( orig, "Input" );
  153. #endif
  154. }
  155. }
  156. //#pragma omp critical
  157. updateMatrix( lm, lm_gt, M, forbidden_classes );
  158. cerr << M << endl;
  159. fileno++;
  160. pb.update( testFiles->count() );
  161. }
  162. pb.hide();
  163. long maxMemory;
  164. rs.getMaximumMemory(maxMemory);
  165. cerr << "Maximum memory used: " << maxMemory << " KB" << endl;
  166. double overall = 0.0;
  167. double sumall = 0.0;
  168. for ( int r = 0; r < ( int )M.rows(); r++ )
  169. {
  170. for ( int c = 0; c < ( int )M.cols(); c++ )
  171. {
  172. if ( r == c )
  173. overall += M( r, c );
  174. sumall += M( r, c );
  175. }
  176. }
  177. overall /= sumall;
  178. // normalizing M using rows
  179. for ( int r = 0 ; r < ( int )M.rows() ; r++ )
  180. {
  181. double sum = 0.0;
  182. for ( int c = 0 ; c < ( int )M.cols() ; c++ )
  183. sum += M( r, c );
  184. if ( fabs( sum ) > 1e-4 )
  185. for ( int c = 0 ; c < ( int )M.cols() ; c++ )
  186. M( r, c ) /= sum;
  187. }
  188. cerr << M << endl;
  189. double avg_perf = 0.0;
  190. int classes_trained = 0;
  191. for ( int r = 0 ; r < ( int )M.rows() ; r++ )
  192. {
  193. if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
  194. {
  195. avg_perf += M( r, r );
  196. double lsum = 0.0;
  197. for(int r2 = 0; r2 < ( int )M.rows(); r2++)
  198. {
  199. lsum += M(r,r2);
  200. }
  201. if(lsum != 0.0)
  202. {
  203. classes_trained++;
  204. }
  205. }
  206. }
  207. if ( write_results )
  208. {
  209. ofstream fout(( resultdir + "/res.txt" ).c_str(), ios::out );
  210. fout << "overall: " << overall << endl;
  211. fout << "Average Performance " << avg_perf / ( classes_trained ) << endl;
  212. fout << "Lower Bound " << 1.0 / classes_trained << endl;
  213. for ( int r = 0 ; r < ( int )M.rows() ; r++ )
  214. {
  215. if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
  216. {
  217. std::string classname = classNames.text( r );
  218. fout << classname.c_str() << ": " << M( r, r ) << endl;
  219. }
  220. }
  221. fout.close();
  222. }
  223. fprintf( stderr, "overall: %f\n", overall );
  224. fprintf( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) );
  225. //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained);
  226. for ( int r = 0 ; r < ( int )M.rows() ; r++ )
  227. {
  228. if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
  229. {
  230. std::string classname = classNames.text( r );
  231. fprintf( stderr, "%s: %f\n", classname.c_str(), M( r, r ) );
  232. }
  233. }
  234. delete semseg;
  235. return 0;
  236. }