123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- /**
- * @file SemSegContextTree.h
- * @brief Context Trees -> Combination of decision tree and context information
- * @author Björn Fröhlich
- * @date 29.11.2011
- */
- #ifndef SemSegContextTreeINCLUDE
- #define SemSegContextTreeINCLUDE
- #include "SemanticSegmentation.h"
- #include <core/vector/VVector.h>
- #include "vislearning/features/localfeatures/LFColorWeijer.h"
- #include "objrec/segmentation/RegionSegmentationMethod.h"
- namespace OBJREC {
- class Operation;
- class TreeNode
- {
- public:
- /** left child node */
- int left;
- /** right child node */
- int right;
- /** position of feat for decision */
- Operation *feat;
- /** decision stamp */
- double decision;
- /** is the node a leaf or not */
- bool isleaf;
- /** distribution in current node */
- std::vector<double> dist;
- /** depth of the node in the tree */
- int depth;
- /** how many pixels are in this node */
- int featcounter;
- /** simple constructor */
- TreeNode() : left ( -1 ), right ( -1 ), feat ( NULL ), decision ( -1.0 ), isleaf ( false ) {}
- /** standard constructor */
- TreeNode ( int _left, int _right, Operation *_feat, double _decision ) : left ( _left ), right ( _right ), feat ( _feat ), decision ( _decision ), isleaf ( false ) {}
- };
- struct Features {
- NICE::MultiChannelImageT<double> *feats;
- MultiChannelImageT<unsigned short int> *cfeats;
- int cTree;
- std::vector<TreeNode> *tree;
- NICE::MultiChannelImageT<double> *integralImg;
- };
- enum ValueTypes
- {
- RAWFEAT,
- CONTEXT,
- NBVALUETYPES
- };
- class ValueAccess
- {
- public:
- virtual double getVal ( const Features &feats, const int &x, const int &y, const int &channel ) = 0;
- virtual std::string writeInfos() = 0;
- virtual ValueTypes getType() = 0;
- };
- enum OperationTypes {
- MINUS,
- MINUSABS,
- ADDITION,
- ONLY1,
- INTEGRAL,
- INTEGRALCENT,
- BIINTEGRALCENT,
- HAARHORIZ,
- HAARVERT,
- HAARDIAG,
- HAAR3HORIZ,
- HAAR3VERT,
- RELATIVEXPOSITION,
- RELATIVEYPOSITION,
- GLOBALFEATS,
- NBOPERATIONS
- };
- class Operation
- {
- protected:
- int x1, y1, x2, y2, channel1, channel2;
- ValueAccess *values;
-
- bool context;
- public:
- Operation()
- {
- values = NULL;
- }
- virtual void set ( int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values )
- {
- x1 = _x1;
- y1 = _y1;
- x2 = _x2;
- y2 = _y2;
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
-
- void setContext(bool _context)
- {
- context = _context;
- }
-
- bool getContext()
- {
- return context;
- }
- /**
- * @brief abstract interface for feature computation
- * @param feats features
- * @param cfeats number of tree node for each pixel
- * @param tree current tree
- * @param x current x position
- * @param y current y position
- * @return double distance
- **/
- virtual double getVal ( const Features &feats, const int &x, const int &y ) = 0;
- virtual Operation* clone() = 0;
- virtual std::string writeInfos() = 0;
- inline void getXY ( const Features &feats, int &xsize, int &ysize )
- {
- xsize = feats.feats->width();
- ysize = feats.feats->height();
- }
- virtual OperationTypes getOps() = 0;
-
- virtual void store(std::ostream & os)
- {
- os << x1 << " " << x2 << " " << y1 << " " << y2 << " " << channel1 << " " << channel2 << std::endl;
- if(values == NULL)
- os << -1 << std::endl;
- else
- os << values->getType() << std::endl;
- }
-
- virtual void restore(std::istream & is);
- };
- /** Localization system */
- class SemSegContextTree : public SemanticSegmentation, public NICE::Persistent
- {
- /** Segmentation Method */
- RegionSegmentationMethod *segmentation;
- /** tree -> saved as vector of nodes */
- std::vector<std::vector<TreeNode> > forest;
- /** local features */
- LFColorWeijer *lfcw;
- /** number of featuretype -> currently: local and context features = 2 */
- int ftypes;
- /** distance between features */
- int grid;
- /** maximum samples for tree */
- int maxSamples;
- /** size for neighbourhood */
- int windowSize;
- /** how many feats should be considered for a split */
- int featsPerSplit;
- /** count samples per label */
- std::map<int, int> labelcounter;
- /** map of labels */
- std::map<int, int> labelmap;
- /** map of labels inverse*/
- std::map<int, int> labelmapback;
- /** scalefactor for balancing for each class */
- std::vector<double> a;
- /** counter for used operations */
- std::vector<int> opOverview;
-
- /** relative use of context vs raw features per tree level*/
- std::vector<std::vector<double> > contextOverview;
- /** the minimum number of features allowed in a leaf */
- int minFeats;
- /** maximal depth of tree */
- int maxDepth;
- /** current depth for training */
- int depth;
-
- /** how many splittests */
- int randomTests;
- /** operations for pairwise features */
- std::vector<Operation*> ops;
- /** operations for pairwise context features */
- std::vector<Operation*> cops;
- std::vector<ValueAccess*> calcVal;
- /** vector of all possible features */
- std::vector<Operation*> featsel;
- /** use alternative calculation for information gain */
- bool useShannonEntropy;
- /** Classnames */
- ClassNames classnames;
- /** train selection */
- std::set<int> forbidden_classes;
- /** Configfile */
- const Config *conf;
- /** use pixelwise labeling or regionlabeling with additional segmenation */
- bool pixelWiseLabeling;
- /** use Gaussian distributed features based on the feature position */
- bool useGaussian;
- /** Number of trees used for the forest */
- int nbTrees;
- public:
- /** simple constructor */
- SemSegContextTree ( const NICE::Config *conf, const MultiDataset *md );
- /** simple destructor */
- virtual ~SemSegContextTree();
- /**
- * test a single image
- * @param ce input data
- * @param segresult segmentation results
- * @param probabilities probabilities for each pixel
- */
- void semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities );
- /**
- * the main training method
- * @param md training data
- */
- void train ( const MultiDataset *md );
- /**
- * @brief computes integral image of given feats
- *
- * @param currentfeats input features
- * @param integralImage output image (must be initilized)
- * @return void
- **/
- void computeIntegralImage ( const NICE::MultiChannelImageT<unsigned short int> ¤tfeats, const NICE::MultiChannelImageT<double> &lfeats, NICE::MultiChannelImageT<double> &integralImage );
- /**
- * compute best split for current settings
- * @param feats features
- * @param currentfeats matrix with current node for each feature
- * @param labels labels for each feature
- * @param node current node
- * @param splitfeat output feature position
- * @param splitval
- * @return best information gain
- */
- double getBestSplit ( std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<unsigned short int> > ¤tfeats, std::vector<NICE::MultiChannelImageT<double> > &integralImgs, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree );
- /**
- * @brief computes the mean probability for a given class over all trees
- * @param x x position
- * @param y y position
- * @param channel current class
- * @param currentfeats information about the nodes
- * @return double mean value
- **/
- inline double getMeanProb ( const int &x, const int &y, const int &channel, const MultiChannelImageT<unsigned short int> ¤tfeats );
- /**
- * @brief load all data to is stream
- *
- * @param is input stream
- * @param format has no influence
- * @return void
- **/
- virtual void restore (std::istream & is, int format = 0);
-
- /**
- * @brief save all data to is stream
- *
- * @param os output stream
- * @param format has no influence
- * @return void
- **/
- virtual void store (std::ostream & os, int format = 0) const;
-
- /**
- * @brief clean up
- *
- * @return void
- **/
- virtual void clear (){}
-
- };
- } // namespace
- #endif
|