123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253 |
- #include "SemSegContextTree.h"
- #include "vislearning/baselib/Globals.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "core/basics/StringTools.h"
- #include "core/imagedisplay/ImageDisplay.h"
- #include "vislearning/cbaselib/CachedExample.h"
- #include "vislearning/cbaselib/PascalResults.h"
- #include "vislearning/baselib/ColorSpace.h"
- #include "segmentation/RSMeanShift.h"
- #include "segmentation/RSGraphBased.h"
- #include "segmentation/RSSlic.h"
- #include "core/basics/numerictools.h"
- #include "core/basics/StringTools.h"
- #include "core/basics/FileName.h"
- #include "vislearning/baselib/ICETools.h"
- #include "core/basics/Timer.h"
- #include "core/basics/vectorio.h"
- #include "core/image/FilterT.h"
- #include <omp.h>
- #include <iostream>
- //#define DEBUG
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- SemSegContextTree::SemSegContextTree ( const Config *conf, const MultiDataset *md )
- : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
- {
- this->conf = conf;
- string section = "SSContextTree";
- lfcw = new LFColorWeijer ( conf );
- firstiteration = true;
- maxSamples = conf->gI ( section, "max_samples", 2000 );
- minFeats = conf->gI ( section, "min_feats", 50 );
- maxDepth = conf->gI ( section, "max_depth", 10 );
- windowSize = conf->gI ( section, "window_size", 16 );
- featsPerSplit = conf->gI ( section, "feats_per_split", 200 );
- useShannonEntropy = conf->gB ( section, "use_shannon_entropy", true );
- nbTrees = conf->gI ( section, "amount_trees", 1 );
- string segmentationtype = conf->gS ( section, "segmentation_type", "slic" );
- useCategorization = conf->gB ( section, "use_categorization", false );
- cndir = conf->gS ( "SSContextTree", "cndir", "" );
- if ( useCategorization && cndir == "" )
- {
- fasthik = new GPHIKClassifierNICE ( conf );
- }
- else
- {
- fasthik = NULL;
- }
- randomTests = conf->gI ( section, "random_tests", 10 );
- bool saveLoadData = conf->gB ( "debug", "save_load_data", false );
- string fileLocation = conf->gS ( "debug", "datafile", "tmp.txt" );
- pixelWiseLabeling = false;
- useRegionFeature = conf->gB ( section, "use_region_feat", false );
- if ( segmentationtype == "meanshift" )
- segmentation = new RSMeanShift ( conf );
- else if ( segmentationtype == "none" )
- {
- segmentation = NULL;
- pixelWiseLabeling = true;
- useRegionFeature = false;
- }
- else if ( segmentationtype == "felzenszwalb" )
- segmentation = new RSGraphBased ( conf );
- else if ( segmentationtype == "slic" )
- segmentation = new RSSlic ( conf );
- else
- throw ( "no valid segmenation_type\n please choose between none, meanshift, slic and felzenszwalb\n" );
- ftypes = conf->gI ( section, "features", 100 );;
- string featsec = "Features";
- vector<Operation*> tops;
- if ( conf->gB ( featsec, "minus", true ) )
- tops.push_back ( new Minus() );
- if ( conf->gB ( featsec, "minus_abs", true ) )
- tops.push_back ( new MinusAbs() );
- if ( conf->gB ( featsec, "addition", true ) )
- tops.push_back ( new Addition() );
- if ( conf->gB ( featsec, "only1", true ) )
- tops.push_back ( new Only1() );
- if ( conf->gB ( featsec, "rel_x", true ) )
- tops.push_back ( new RelativeXPosition() );
- if ( conf->gB ( featsec, "rel_y", true ) )
- tops.push_back ( new RelativeYPosition() );
- if ( conf->gB ( featsec, "rel_z", true ) )
- tops.push_back ( new RelativeZPosition() );
- ops.push_back ( tops );
- tops.clear();
- tops.push_back ( new RegionFeat() );
- ops.push_back ( tops );
- tops.clear();
- if ( conf->gB ( featsec, "int", true ) )
- tops.push_back ( new IntegralOps() );
- if ( conf->gB ( featsec, "bi_int_cent", true ) )
- tops.push_back ( new BiIntegralCenteredOps() );
- if ( conf->gB ( featsec, "int_cent", true ) )
- tops.push_back ( new IntegralCenteredOps() );
- if ( conf->gB ( featsec, "haar_horz", true ) )
- tops.push_back ( new HaarHorizontal() );
- if ( conf->gB ( featsec, "haar_vert", true ) )
- tops.push_back ( new HaarVertical() );
- if ( conf->gB ( featsec, "haar_stack", true ) )
- tops.push_back ( new HaarStacked() );
- if ( conf->gB ( featsec, "haar_diagxy", true ) )
- tops.push_back ( new HaarDiagXY() );
- if ( conf->gB ( featsec, "haar_diagxz", true ) )
- tops.push_back ( new HaarDiagXZ() );
- if ( conf->gB ( featsec, "haar_diagyz", true ) )
- tops.push_back ( new HaarDiagYZ() );
- if ( conf->gB ( featsec, "haar3_horz", true ) )
- tops.push_back ( new Haar3Horiz() );
- if ( conf->gB ( featsec, "haar3_vert", true ) )
- tops.push_back ( new Haar3Vert() );
- if ( conf->gB ( featsec, "haar3_stack", true ) )
- tops.push_back ( new Haar3Stack() );
- ops.push_back ( tops );
- ops.push_back ( tops );
- tops.clear();
- if ( conf->gB ( featsec, "minus", true ) )
- tops.push_back ( new Minus() );
- if ( conf->gB ( featsec, "minus_abs", true ) )
- tops.push_back ( new MinusAbs() );
- if ( conf->gB ( featsec, "addition", true ) )
- tops.push_back ( new Addition() );
- if ( conf->gB ( featsec, "only1", true ) )
- tops.push_back ( new Only1() );
- if ( conf->gB ( featsec, "rel_x", true ) )
- tops.push_back ( new RelativeXPosition() );
- if ( conf->gB ( featsec, "rel_y", true ) )
- tops.push_back ( new RelativeYPosition() );
- if ( conf->gB ( featsec, "rel_z", true ) )
- tops.push_back ( new RelativeZPosition() );
- ops.push_back ( tops );
- useGradient = conf->gB ( featsec, "use_gradient", true );
- useWeijer = conf->gB ( featsec, "use_weijer", true );
- useGaussian = conf->gB ( featsec, "use_diff_gaussian", false );
- // geometric features of hoiem
- useHoiemFeatures = conf->gB ( featsec, "use_hoiem_features", false );
- if ( useHoiemFeatures )
- {
- hoiemDirectory = conf->gS ( featsec, "hoiem_directory" );
- }
- opOverview = vector<int> ( NBOPERATIONS, 0 );
- contextOverview = vector<vector<double> > ( maxDepth, vector<double> ( 2, 0.0 ) );
- calcVal.push_back ( new MCImageAccess() );
- calcVal.push_back ( new MCImageAccess() );
- calcVal.push_back ( new MCImageAccess() );
- calcVal.push_back ( new MCImageAccess() );
- calcVal.push_back ( new ClassificationResultAccess() );
- classnames = md->getClassNames ( "train" );
- ///////////////////////////////////
- // Train Segmentation Context Trees
- ///////////////////////////////////
- if ( saveLoadData )
- {
- if ( FileMgt::fileExists ( fileLocation ) )
- read ( fileLocation );
- else
- {
- train ( md );
- write ( fileLocation );
- }
- }
- else
- {
- train ( md );
- }
- }
- SemSegContextTree::~SemSegContextTree()
- {
- }
- double SemSegContextTree::getBestSplit ( std::vector<NICE::MultiChannelImage3DT<double> > &feats, std::vector<NICE::MultiChannelImage3DT<unsigned short int> > ¤tfeats, const std::vector<NICE::MultiChannelImageT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree, vector<vector<vector<double> > > ®ionProbs )
- {
- Timer t;
- t.start();
- int imgCount = 0;
- try
- {
- imgCount = ( int ) feats.size();
- }
- catch ( Exception )
- {
- cerr << "no features computed?" << endl;
- }
- double bestig = -numeric_limits< double >::max();
- splitop = NULL;
- splitval = -1.0;
- set<vector<int> >selFeats;
- map<int, int> e;
- int featcounter = forest[tree][node].featcounter;
- if ( featcounter < minFeats )
- {
- return 0.0;
- }
- vector<double> fraction ( a.size(), 0.0 );
- for ( uint i = 0; i < fraction.size(); i++ )
- {
- if ( forbidden_classes.find ( labelmapback[i] ) != forbidden_classes.end() )
- fraction[i] = 0;
- else
- fraction[i] = ( ( double ) maxSamples ) / ( ( double ) featcounter * a[i] * a.size() );
- }
- featcounter = 0;
- for ( int iCounter = 0; iCounter < imgCount; iCounter++ )
- {
- int xsize = ( int ) currentfeats[iCounter].width();
- int ysize = ( int ) currentfeats[iCounter].height();
- int zsize = ( int ) currentfeats[iCounter].depth();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- if ( currentfeats[iCounter].get ( x, y, z, tree ) == node )
- {
- int cn = labels[iCounter].get ( x, y, ( uint ) z );
- double randD = ( double ) rand() / ( double ) RAND_MAX;
- if ( labelmap.find ( cn ) == labelmap.end() )
- continue;
- if ( randD < fraction[labelmap[cn]] )
- {
- vector<int> tmp ( 4, 0 );
- tmp[0] = iCounter;
- tmp[1] = x;
- tmp[2] = y;
- tmp[3] = z;
- featcounter++;
- selFeats.insert ( tmp );
- e[cn]++;
- }
- }
- }
- }
- }
- }
- map<int, int>::iterator mapit;
- // global entropy
- double globent = 0.0;
- for ( mapit = e.begin() ; mapit != e.end(); mapit++ )
- {
- double p = ( double ) ( *mapit ).second / ( double ) featcounter;
- globent += p * log2 ( p );
- }
- globent = -globent;
- if ( globent < 0.5 )
- {
- return 0.0;
- }
- // vector of all possible features
- std::vector<Operation*> featsel;
- for ( int i = 0; i < featsPerSplit; i++ )
- {
- int x1, x2, y1, y2, z1, z2;
- int ft = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) ftypes );
- int tmpws = windowSize;
- if ( firstiteration )
- ft = 0;
- if ( channelsPerType[ft].size() == 0 )
- {
- ft = 0;
- }
- if ( ft > 1 )
- {
- //use larger window size for context features
- tmpws *= 3;
- }
- if ( ft == 1 )
- {
- if ( depth < 8 )
- {
- ft = 0;
- }
- }
- // random value range between (-window-size/2) and (window-size/2)
- double z_ratio = conf->gB ( "SSContextTree", "z_ratio", 1.0 );
- int tmp_z = ( int ) floor( (tmpws * z_ratio) + 0.5 );
- x1 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmpws ) - tmpws / 2;
- x2 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmpws ) - tmpws / 2;
- y1 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmpws ) - tmpws / 2;
- y2 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmpws ) - tmpws / 2;
- z1 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmp_z ) - tmp_z / 2;
- z2 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) tmp_z ) - tmp_z / 2;
- int f1 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) channelsPerType[ft].size() );
- int f2 = f1;
- if ( ( double ) rand() / ( double ) RAND_MAX > 0.5 )
- f2 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) channelsPerType[ft].size() );
- int o = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) ops[ft].size() );
- f1 = channelsPerType[ft][f1];
- f2 = channelsPerType[ft][f2];
- if ( ft == 1 )
- {
- int classes = ( int ) regionProbs[0][0].size();
- f2 = ( int ) ( ( double ) rand() / ( double ) RAND_MAX * ( double ) classes );
- }
- // only depth-values in front of the current pixel are allowed
- bool z_negative_only = conf->gB ( "SSContextTree", "z_negative_only", false );
- if (z_negative_only)
- {
- z1 = -abs(z1);
- z2 = -abs(z2);
- }
- Operation *op = ops[ft][o]->clone();
- op->set ( x1, y1, z1, x2, y2, z2, f1, f2, calcVal[ft] );
- op->setFeatType ( ft );
- if ( ft == 3 || ft == 4 )
- op->setContext ( true );
- else
- op->setContext ( false );
- featsel.push_back ( op );
- }
- for ( int f = 0; f < featsPerSplit; f++ )
- {
- double l_bestig = -numeric_limits< double >::max();
- double l_splitval = -1.0;
- set<vector<int> >::iterator it;
- vector<double> vals;
- double maxval = -numeric_limits<double>::max();
- double minval = numeric_limits<double>::max();
- for ( it = selFeats.begin() ; it != selFeats.end(); it++ )
- {
- Features feat;
- feat.feats = &feats[ ( *it ) [0]];
- feat.cfeats = ¤tfeats[ ( *it ) [0]];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- assert ( forest.size() > ( uint ) tree );
- assert ( forest[tree][0].dist.size() > 0 );
- feat.rProbs = ®ionProbs[ ( *it ) [0]];
- double val = featsel[f]->getVal ( feat, ( *it ) [1], ( *it ) [2], ( *it ) [3] );
- if ( !isfinite ( val ) )
- {
- //cerr << "feat " << feat.feats->width() << " " << feat.feats->height() << " " << feat.feats->depth() << endl;
- //cerr << "non finite value " << val << " for " << featsel[f]->writeInfos() << endl << (*it) [1] << " " << (*it) [2] << " " << (*it) [3] << endl;
- val = 0.0;
- }
- vals.push_back ( val );
- maxval = std::max ( val, maxval );
- minval = std::min ( val, minval );
- }
- if ( minval == maxval )
- continue;
- double scale = maxval - minval;
- vector<double> splits;
- for ( int r = 0; r < randomTests; r++ )
- {
- splits.push_back ( ( ( double ) rand() / ( double ) RAND_MAX*scale ) + minval );
- }
- for ( int run = 0 ; run < randomTests; run++ )
- {
- set<vector<int> >::iterator it2;
- double val = splits[run];
- map<int, int> eL, eR;
- int counterL = 0, counterR = 0;
- int counter2 = 0;
- for ( it2 = selFeats.begin() ; it2 != selFeats.end(); it2++, counter2++ )
- {
- int cn = labels[ ( *it2 ) [0]].get ( ( *it2 ) [1], ( *it2 ) [2], ( *it2 ) [3] );
- //cout << "vals[counter2] " << vals[counter2] << " val: " << val << endl;
- if ( vals[counter2] < val )
- {
- //left entropie:
- eL[cn] = eL[cn] + 1;
- counterL++;
- }
- else
- {
- //right entropie:
- eR[cn] = eR[cn] + 1;
- counterR++;
- }
- }
- double leftent = 0.0;
- for ( mapit = eL.begin() ; mapit != eL.end(); mapit++ )
- {
- double p = ( double ) ( *mapit ).second / ( double ) counterL;
- leftent -= p * log2 ( p );
- }
- double rightent = 0.0;
- for ( mapit = eR.begin() ; mapit != eR.end(); mapit++ )
- {
- double p = ( double ) ( *mapit ).second / ( double ) counterR;
- rightent -= p * log2 ( p );
- }
- //cout << "rightent: " << rightent << " leftent: " << leftent << endl;
- double pl = ( double ) counterL / ( double ) ( counterL + counterR );
- double ig = globent - ( 1.0 - pl ) * rightent - pl * leftent;
- //double ig = globent - rightent - leftent;
- if ( useShannonEntropy )
- {
- double esplit = - ( pl * log ( pl ) + ( 1 - pl ) * log ( 1 - pl ) );
- ig = 2 * ig / ( globent + esplit );
- }
- if ( ig > l_bestig )
- {
- l_bestig = ig;
- l_splitval = val;
- }
- }
- if ( l_bestig > bestig )
- {
- bestig = l_bestig;
- splitop = featsel[f];
- splitval = l_splitval;
- }
- }
- //FIXME: delete all features!
- /*for(int i = 0; i < featsPerSplit; i++)
- {
- if(featsel[i] != splitop)
- delete featsel[i];
- }*/
- #ifdef DEBUG
- //cout << "globent: " << globent << " bestig " << bestig << " splitval: " << splitval << endl;
- #endif
- return bestig;
- }
- inline double SemSegContextTree::getMeanProb ( const int &x, const int &y, const int &z, const int &channel, const MultiChannelImage3DT<unsigned short int> ¤tfeats )
- {
- double val = 0.0;
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- val += forest[tree][currentfeats.get ( x,y,z,tree ) ].dist[channel];
- }
- return val / ( double ) nbTrees;
- }
- void SemSegContextTree::computeIntegralImage ( const NICE::MultiChannelImage3DT<unsigned short int> ¤tfeats, NICE::MultiChannelImage3DT<double> &feats, int firstChannel )
- {
- int xsize = feats.width();
- int ysize = feats.height();
- int zsize = feats.depth();
- if ( firstiteration )
- {
- #pragma omp parallel for
- for ( int it = 0; it < ( int ) integralMap.size(); it++ )
- {
- int corg = integralMap[it].first;
- int cint = integralMap[it].second;
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- feats ( x, y, z, cint ) = feats ( x, y, z, corg );
- }
- }
- }
- feats.calcIntegral ( cint );
- }
- }
- int channels = ( int ) forest[0][0].dist.size();
- #pragma omp parallel for
- for ( int c = 0; c < channels; c++ )
- {
- feats ( 0, 0, 0, firstChannel + c ) = getMeanProb ( 0, 0, 0, c, currentfeats );
- //first column
- for ( int y = 1; y < ysize; y++ )
- {
- feats ( 0, y, 0, firstChannel + c ) = getMeanProb ( 0, y, 0, c, currentfeats )
- + feats ( 0, y - 1, 0, firstChannel + c );
- }
- //first row
- for ( int x = 1; x < xsize; x++ )
- {
- feats ( x, 0, 0, firstChannel + c ) = getMeanProb ( x, 0, 0, c, currentfeats )
- + feats ( x - 1, 0, 0, firstChannel + c );
- }
- //first stack
- for ( int z = 1; z < zsize; z++ )
- {
- feats ( 0, 0, z, firstChannel + c ) = getMeanProb ( 0, 0, z, c, currentfeats )
- + feats ( 0, 0, z - 1, firstChannel + c );
- }
- //x-y plane
- for ( int y = 1; y < ysize; y++ )
- {
- for ( int x = 1; x < xsize; x++ )
- {
- feats ( x, y, 0, firstChannel + c ) = getMeanProb ( x, y, 0, c, currentfeats )
- + feats ( x, y - 1, 0, firstChannel + c )
- + feats ( x - 1, y, 0, firstChannel + c )
- - feats ( x - 1, y - 1, 0, firstChannel + c );
- }
- }
- //y-z plane
- for ( int z = 1; z < zsize; z++ )
- {
- for ( int y = 1; y < ysize; y++ )
- {
- feats ( 0, y, z, firstChannel + c ) = getMeanProb ( 0, y, z, c, currentfeats )
- + feats ( 0, y - 1, z, firstChannel + c )
- + feats ( 0, y, z - 1, firstChannel + c )
- - feats ( 0, y - 1, z - 1, firstChannel + c );
- }
- }
- //x-z plane
- for ( int z = 1; z < zsize; z++ )
- {
- for ( int x = 1; x < xsize; x++ )
- {
- feats ( x, 0, z, firstChannel + c ) = getMeanProb ( x, 0, z, c, currentfeats )
- + feats ( x - 1, 0, z, firstChannel + c )
- + feats ( x, 0, z - 1, firstChannel + c )
- - feats ( x - 1, 0, z - 1, firstChannel + c );
- }
- }
- //rest
- for ( int z = 1; z < zsize; z++ )
- {
- for ( int y = 1; y < ysize; y++ )
- {
- for ( int x = 1; x < xsize; x++ )
- {
- feats ( x, y, z, firstChannel + c ) = getMeanProb ( x, y, z, c, currentfeats )
- + feats ( x - 1, y, z, firstChannel + c )
- + feats ( x, y - 1, z, firstChannel + c )
- + feats ( x, y, z - 1, firstChannel + c )
- + feats ( x - 1, y - 1, z - 1, firstChannel + c )
- - feats ( x - 1, y - 1, z, firstChannel + c )
- - feats ( x - 1, y, z - 1, firstChannel + c )
- - feats ( x, y - 1, z - 1, firstChannel + c );
- }
- }
- }
- }
- }
- inline double computeWeight ( const double &d, const double &dim )
- {
- return 1.0 / ( pow ( 2, ( double ) ( dim - d + 1 ) ) );
- }
- void SemSegContextTree::train ( const MultiDataset *md )
- {
- int shortsize = numeric_limits<short>::max();
- Timer timer;
- timer.start();
- const LabeledSet train = * ( *md ) ["train"];
- const LabeledSet *trainp = &train;
- vector<int> zsizeVec;
- getDepthVector ( &train, zsizeVec );
- bool run_3dseg = conf->gB ( "debug", "run_3dseg", true );
- ProgressBar pb ( "compute feats" );
- pb.show();
- //TODO: Speichefresser!, lohnt sich sparse?
- vector<MultiChannelImage3DT<double> > allfeats;
- vector<MultiChannelImage3DT<unsigned short int> > currentfeats;
- vector<MultiChannelImageT<int> > labels;
- vector<SparseVector*> globalCategorFeats;
- vector<map<int,int> > classesPerImage;
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
- vector<vector<vector<double> > > regionProbs;
- vector<vector<int> > rSize;
- vector<int> amountRegionpI;
- if ( forbidden_classes_s == "" )
- {
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
- }
- classnames.getSelection ( forbidden_classes_s, forbidden_classes );
- int imgcounter = 0;
- int amountPixels = 0;
- ////////////////////////////////////////////////////
- //define which featurextraction methods should be used for each channel
- if ( imagetype == IMAGETYPE_RGB )
- {
- rawChannels = 3;
- }
- else
- {
- rawChannels = 1;
- }
- // how many channels without integral image
- int shift = 0;
- if ( useGradient )
- rawChannels *= 2;
- if ( useWeijer )
- rawChannels += 11;
- if ( useHoiemFeatures )
- rawChannels += 8;
- if ( useGaussian )
- rawChannels += 1;
- // gray value images
- for ( int i = 0; i < rawChannels; i++ )
- {
- channelType.push_back ( 0 );
- }
- // regions
- if ( useRegionFeature )
- {
- channelType.push_back ( 1 );
- shift++;
- }
- ///////////////////////////// read input data /////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////
- int depthCount = 0;
- vector< string > filelist;
- NICE::MultiChannelImageT<uchar> pixelLabels;
- LOOP_ALL_S ( *trainp )
- {
- EACH_INFO ( classno, info );
- std::string file = info.img();
- filelist.push_back ( file );
- depthCount++;
- const LocalizationResult *locResult = info.localization();
- // getting groundtruth
- NICE::Image pL;
- pL.resize ( locResult->xsize, locResult->ysize );
- pL.set ( 0 );
- locResult->calcLabeledImage ( pL, ( *classNames ).getBackgroundClass() );
- pixelLabels.addChannel ( pL );
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- file.c_str() );
- continue;
- }
- fprintf ( stderr, "SSContext: Collecting pixel examples from localization info: %s\n", file.c_str() );
- int depthBoundary = 0;
- if ( run_3dseg )
- {
- depthBoundary = zsizeVec[imgcounter];
- }
- if ( depthCount < depthBoundary ) continue;
- // all image slices collected -> make a 3d image
- NICE::MultiChannelImage3DT<double> imgData;
- make3DImage ( filelist, imgData );
- int xsize = imgData.width();
- int ysize = imgData.height();
- int zsize = imgData.depth();
- amountPixels += xsize * ysize * zsize;
- MultiChannelImageT<int> tmpMat ( xsize, ysize, ( uint ) zsize );
- labels.push_back ( tmpMat );
- currentfeats.push_back ( MultiChannelImage3DT<unsigned short int> ( xsize, ysize, zsize, nbTrees ) );
- currentfeats[imgcounter].setAll ( 0 );
- //TODO: resize image?!
- MultiChannelImage3DT<double> feats;
- allfeats.push_back ( feats );
- int amountRegions;
- // read image and do some simple transformations
- extractBasicFeatures ( allfeats[imgcounter], imgData, filelist, amountRegions );
- if ( useRegionFeature )
- {
- amountRegionpI.push_back ( amountRegions );
- rSize.push_back ( vector<int> ( amountRegions, 0 ) );
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- rSize[imgcounter][allfeats[imgcounter] ( x, y, z, rawChannels ) ]++;
- }
- }
- }
- }
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- if ( run_3dseg )
- classno = pixelLabels ( x, y, ( uint ) z );
- else
- classno = pL.getPixelQuick ( x,y );
- labels[imgcounter].set ( x, y, classno, ( uint ) z );
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- labelcounter[classno]++;
- }
- }
- }
- if ( useCategorization )
- {
- globalCategorFeats.push_back ( new SparseVector() );
- classesPerImage.push_back ( map<int,int>() );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- if ( run_3dseg )
- classno = pixelLabels ( x, y, ( uint ) z );
- else
- classno = pL.getPixelQuick ( x,y );
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- classesPerImage[imgcounter][classno] = 1;
- }
- }
- }
- }
- pb.update ( trainp->count() );
- filelist.clear();
- pixelLabels.reInit ( 0,0,0 );
- depthCount = 0;
- imgcounter++;
- }
- pb.hide();
- map<int, int>::iterator mapit;
- int classes = 0;
- for ( mapit = labelcounter.begin(); mapit != labelcounter.end(); mapit++ )
- {
- labelmap[mapit->first] = classes;
- labelmapback[classes] = mapit->first;
- classes++;
- }
- //////////////////////////// channel configuration ////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////
- for ( int i = 0; i < rawChannels; i++ )
- {
- channelType.push_back ( 2 );
- }
- // integral images
- for ( int i = 0; i < classes; i++ )
- {
- channelType.push_back ( 3 );
- }
- integralMap.clear();
- for ( int i = 0; i < rawChannels; i++ )
- {
- integralMap.push_back ( pair<int, int> ( i, i + rawChannels + shift ) );
- }
- int amountTypes = 5;
- channelsPerType = vector<vector<int> > ( amountTypes, vector<int>() );
- for ( int i = 0; i < ( int ) channelType.size(); i++ )
- {
- channelsPerType[channelType[i]].push_back ( i );
- }
- for ( int i = 0; i < classes; i++ )
- {
- channelsPerType[channelsPerType.size()-1].push_back ( i );
- }
- ftypes = std::min ( amountTypes, ftypes );
- ///////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////
- if ( useRegionFeature )
- {
- for ( int a = 0; a < ( int ) amountRegionpI.size(); a++ )
- {
- regionProbs.push_back ( vector<vector<double> > ( amountRegionpI[a], vector<double> ( classes, 0.0 ) ) );
- }
- }
- //balancing
- int featcounter = 0;
- a = vector<double> ( classes, 0.0 );
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = ( int ) currentfeats[iCounter].width();
- int ysize = ( int ) currentfeats[iCounter].height();
- int zsize = ( int ) currentfeats[iCounter].depth();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- featcounter++;
- int cn = labels[iCounter] ( x, y, ( uint ) z );
- if ( labelmap.find ( cn ) == labelmap.end() )
- continue;
- a[labelmap[cn]] ++;
- }
- }
- }
- }
- for ( int i = 0; i < ( int ) a.size(); i++ )
- {
- a[i] /= ( double ) featcounter;
- }
- #ifdef DEBUG
- for ( int i = 0; i < ( int ) a.size(); i++ )
- {
- cout << "a[" << i << "]: " << a[i] << endl;
- }
- cout << "a.size: " << a.size() << endl;
- #endif
- depth = 0;
- uniquenumber = 0;
- for ( int t = 0; t < nbTrees; t++ )
- {
- vector<TreeNode> singletree;
- singletree.push_back ( TreeNode() );
- singletree[0].dist = vector<double> ( classes, 0.0 );
- singletree[0].depth = depth;
- singletree[0].featcounter = amountPixels;
- singletree[0].nodeNumber = uniquenumber;
- uniquenumber++;
- forest.push_back ( singletree );
- }
- vector<int> startnode ( nbTrees, 0 );
- bool allleaf = false;
- //int baseFeatSize = allfeats[0].size();
- timer.stop();
- cerr << "preprocessing finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
- while ( !allleaf && depth < maxDepth )
- {
- depth++;
- #ifdef DEBUG
- cout << "depth: " << depth << endl;
- #endif
- allleaf = true;
- vector<MultiChannelImage3DT<unsigned short int> > lastfeats = currentfeats;
- vector<vector<vector<double> > > lastRegionProbs = regionProbs;
- if ( useRegionFeature )
- {
- int a_max = ( int ) regionProbs.size();
- for ( int a = 0; a < a_max; a++ )
- {
- int b_max = ( int ) regionProbs[a].size();
- for ( int b = 0; b < b_max; b++ )
- {
- int c_max = ( int ) regionProbs[a][b].size();
- for ( int c = 0; c < c_max; c++ )
- {
- regionProbs[a][b][c] = 0.0;
- }
- }
- }
- }
- #if 1
- Timer timerDepth;
- timerDepth.start();
- #endif
- double weight = computeWeight ( depth, maxDepth ) - computeWeight ( depth - 1, maxDepth );
- if ( depth == 1 )
- {
- weight = computeWeight ( 1, maxDepth );
- }
- // omp_set_dynamic(0);
- #pragma omp parallel for
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- const int t = ( int ) forest[tree].size();
- const int s = startnode[tree];
- startnode[tree] = t;
- //#pragma omp parallel for
- for ( int i = s; i < t; i++ )
- {
- if ( !forest[tree][i].isleaf && forest[tree][i].left < 0 )
- {
- Operation *splitfeat = NULL;
- double splitval;
- double bestig = getBestSplit ( allfeats, lastfeats, labels, i, splitfeat, splitval, tree, lastRegionProbs );
- for ( int ii = 0; ii < ( int ) lastfeats.size(); ii++ )
- {
- for ( int c = 0; c < lastfeats[ii].channels(); c++ )
- {
- short unsigned int minv, maxv;
- lastfeats[ii].statistics ( minv, maxv, c );
- }
- }
- forest[tree][i].feat = splitfeat;
- forest[tree][i].decision = splitval;
- if ( splitfeat != NULL )
- {
- allleaf = false;
- int left;
- #pragma omp critical
- {
- left = forest[tree].size();
- forest[tree].push_back ( TreeNode() );
- forest[tree].push_back ( TreeNode() );
- }
- int right = left + 1;
- forest[tree][i].left = left;
- forest[tree][i].right = right;
- forest[tree][left].dist = vector<double> ( classes, 0.0 );
- forest[tree][right].dist = vector<double> ( classes, 0.0 );
- forest[tree][left].depth = depth;
- forest[tree][right].depth = depth;
- forest[tree][left].featcounter = 0;
- forest[tree][right].featcounter = 0;
- forest[tree][left].nodeNumber = uniquenumber;
- int leftu = uniquenumber;
- uniquenumber++;
- forest[tree][right].nodeNumber = uniquenumber;
- int rightu = uniquenumber;
- uniquenumber++;
- forest[tree][right].featcounter = 0;
- #pragma omp parallel for
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int zsize = currentfeats[iCounter].depth();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- if ( currentfeats[iCounter].get ( x, y, z, tree ) == i )
- {
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs[iCounter];
- double val = splitfeat->getVal ( feat, x, y, z );
- if ( !isfinite ( val ) )
- {
- val = 0.0;
- }
- #pragma omp critical
- if ( val < splitval )
- {
- currentfeats[iCounter].set ( x, y, z, left, tree );
- if ( labelmap.find ( labels[iCounter] ( x, y, ( uint ) z ) ) != labelmap.end() )
- forest[tree][left].dist[labelmap[labels[iCounter] ( x, y, ( uint ) z ) ]]++;
- forest[tree][left].featcounter++;
- if ( useCategorization && leftu < shortsize )
- ( *globalCategorFeats[iCounter] ) [leftu]+=weight;
- }
- else
- {
- currentfeats[iCounter].set ( x, y, z, right, tree );
- if ( labelmap.find ( labels[iCounter] ( x, y, ( uint ) z ) ) != labelmap.end() )
- forest[tree][right].dist[labelmap[labels[iCounter] ( x, y, ( uint ) z ) ]]++;
- forest[tree][right].featcounter++;
- if ( useCategorization && rightu < shortsize )
- ( *globalCategorFeats[iCounter] ) [rightu]+=weight;
- }
- }
- }
- }
- }
- }
- double lcounter = 0.0, rcounter = 0.0;
- for ( uint d = 0; d < forest[tree][left].dist.size(); d++ )
- {
- if ( forbidden_classes.find ( labelmapback[d] ) != forbidden_classes.end() )
- {
- forest[tree][left].dist[d] = 0;
- forest[tree][right].dist[d] = 0;
- }
- else
- {
- forest[tree][left].dist[d] /= a[d];
- lcounter += forest[tree][left].dist[d];
- forest[tree][right].dist[d] /= a[d];
- rcounter += forest[tree][right].dist[d];
- }
- }
- if ( lcounter <= 0 || rcounter <= 0 )
- {
- cout << "lcounter : " << lcounter << " rcounter: " << rcounter << endl;
- cout << "splitval: " << splitval << " splittype: " << splitfeat->writeInfos() << endl;
- cout << "bestig: " << bestig << endl;
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int zsize = currentfeats[iCounter].depth();
- int counter = 0;
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- if ( lastfeats[iCounter].get ( x, y, tree ) == i )
- {
- if ( ++counter > 30 )
- break;
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs[iCounter];
- double val = splitfeat->getVal ( feat, x, y, z );
- if ( !isfinite ( val ) )
- {
- val = 0.0;
- }
- cout << "splitval: " << splitval << " val: " << val << endl;
- }
- }
- }
- }
- }
- assert ( lcounter > 0 && rcounter > 0 );
- }
- for ( uint d = 0; d < forest[tree][left].dist.size(); d++ )
- {
- forest[tree][left].dist[d] /= lcounter;
- forest[tree][right].dist[d] /= rcounter;
- }
- }
- else
- {
- forest[tree][i].isleaf = true;
- }
- }
- }
- }
- if ( useRegionFeature )
- {
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int zsize = currentfeats[iCounter].depth();
- #pragma omp parallel for
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int node = currentfeats[iCounter].get ( x, y, z, tree );
- for ( uint d = 0; d < forest[tree][node].dist.size(); d++ )
- {
- regionProbs[iCounter][ ( int ) ( allfeats[iCounter] ( x, y, z, rawChannels ) ) ][d] += forest[tree][node].dist[d];
- }
- }
- }
- }
- }
- }
- int a_max = ( int ) regionProbs.size();
- for ( int a = 0; a < a_max; a++ )
- {
- int b_max = ( int ) regionProbs[a].size();
- for ( int b = 0; b < b_max; b++ )
- {
- int c_max = ( int ) regionProbs[a][b].size();
- for ( int c = 0; c < c_max; c++ )
- {
- regionProbs[a][b][c] /= ( double ) ( rSize[a][b] );
- }
- }
- }
- }
- //compute integral images
- if ( firstiteration )
- {
- for ( int i = 0; i < imgcounter; i++ )
- {
- allfeats[i].addChannel ( ( int ) ( classes + rawChannels ) );
- }
- }
- for ( int i = 0; i < imgcounter; i++ )
- {
- computeIntegralImage ( currentfeats[i], allfeats[i], channelType.size() - classes );
- }
- if ( firstiteration )
- {
- firstiteration = false;
- }
- #if 1
- timerDepth.stop();
- cout << "time for depth " << depth << ": " << timerDepth.getLastAbsolute() << endl;
- #endif
- lastfeats.clear();
- lastRegionProbs.clear();
- }
- timer.stop();
- cerr << "learning finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
- cout << "uniquenumber " << uniquenumber << endl;
- if ( useCategorization && fasthik != NULL )
- {
- uniquenumber = std::min ( shortsize, uniquenumber );
- for ( uint i = 0; i < globalCategorFeats.size(); i++ )
- {
- globalCategorFeats[i]->setDim ( uniquenumber );
- globalCategorFeats[i]->normalize();
- }
- map<int,Vector> ys;
- int cCounter = 0;
- for ( map<int,int>::iterator it = labelmap.begin(); it != labelmap.end(); it++, cCounter++ )
- {
- ys[cCounter] = Vector ( globalCategorFeats.size() );
- for ( int i = 0; i < imgcounter; i++ )
- {
- if ( classesPerImage[i].find ( it->first ) != classesPerImage[i].end() )
- {
- ys[cCounter][i] = 1;
- }
- else
- {
- ys[cCounter][i] = -1;
- }
- }
- }
- fasthik->train ( globalCategorFeats, ys );
- }
- #ifdef DEBUG
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int t = ( int ) forest[tree].size();
- for ( int i = 0; i < t; i++ )
- {
- printf ( "tree[%i]: left: %i, right: %i", i, forest[tree][i].left, forest[tree][i].right );
- if ( !forest[tree][i].isleaf && forest[tree][i].left != -1 )
- {
- cout << ", feat: " << forest[tree][i].feat->writeInfos() << " ";
- opOverview[forest[tree][i].feat->getOps() ]++;
- contextOverview[forest[tree][i].depth][ ( int ) forest[tree][i].feat->getContext() ]++;
- }
- for ( int d = 0; d < ( int ) forest[tree][i].dist.size(); d++ )
- {
- cout << " " << forest[tree][i].dist[d];
- }
- cout << endl;
- }
- }
- std::map<int, int> featTypeCounter;
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int t = ( int ) forest[tree].size();
- for ( int i = 0; i < t; i++ )
- {
- if ( !forest[tree][i].isleaf && forest[tree][i].left != -1 )
- {
- featTypeCounter[forest[tree][i].feat->getFeatType() ] += 1;
- }
- }
- }
- cout << "evaluation of featuretypes" << endl;
- for ( map<int, int>::const_iterator it = featTypeCounter.begin(); it != featTypeCounter.end(); it++ )
- {
- cerr << it->first << ": " << it->second << endl;
- }
- for ( uint c = 0; c < ops.size(); c++ )
- {
- for ( int t = 0; t < ( int ) ops[c].size(); t++ )
- {
- cout << ops[c][t]->writeInfos() << ": " << opOverview[ops[c][t]->getOps() ] << endl;
- }
- }
- for ( int d = 0; d < maxDepth; d++ )
- {
- double sum = contextOverview[d][0] + contextOverview[d][1];
- if ( sum == 0 )
- sum = 1;
- contextOverview[d][0] /= sum;
- contextOverview[d][1] /= sum;
- cout << "depth: " << d << " woContext: " << contextOverview[d][0] << " wContext: " << contextOverview[d][1] << endl;
- }
- #endif
- timer.stop();
- cerr << "rest finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
- }
- void SemSegContextTree::extractBasicFeatures ( NICE::MultiChannelImage3DT<double> &feats, const NICE::MultiChannelImage3DT<double> &imgData, const vector<string> &filelist, int &amountRegions )
- {
- int xsize = imgData.width();
- int ysize = imgData.height();
- int zsize = imgData.depth();
- //TODO: resize image?!
- amountRegions = 0;
- feats.reInit ( xsize, ysize, zsize, imgData.channels() );
- feats.setAll ( 0 );
- for ( int z = 0; z < zsize; z++ )
- {
- NICE::MultiChannelImageT<double> feats_tmp;
- feats_tmp.reInit ( xsize, ysize, 3 );
- if ( imagetype == IMAGETYPE_RGB )
- {
- NICE::ColorImage img = imgData.getColor ( z );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int r = 0; r < 3; r++ )
- {
- feats_tmp.set ( x, y, img.getPixel ( x, y, r ), ( uint ) r );
- }
- }
- }
- }
- else
- {
- NICE::ImageT<double> img = imgData.getChannelT ( z,0 );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- feats_tmp.set ( x, y, img.getPixel ( x, y ), 0 );
- }
- }
- }
- if ( imagetype == IMAGETYPE_RGB )
- feats_tmp = ColorSpace::rgbtolab ( feats_tmp );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- if ( imagetype == IMAGETYPE_RGB )
- {
- for ( uint r = 0; r < 3; r++ )
- {
- feats.set ( x, y, z, feats_tmp.get ( x, y, r ), r );
- }
- }
- else
- {
- feats.set ( x, y, z, feats_tmp.get ( x, y, 0 ), 0 );
- }
- }
- }
- if ( useGradient )
- {
- int currentsize = feats_tmp.channels();
- feats_tmp.addChannel ( currentsize );
- for ( int c = 0; c < currentsize; c++ )
- {
- ImageT<double> tmp = feats_tmp[c];
- ImageT<double> tmp2 = feats_tmp[c+currentsize];
- NICE::FilterT<double, double, double>::gradientStrength ( tmp, tmp2 );
- }
- }
- if ( useWeijer )
- {
- if ( imagetype == IMAGETYPE_RGB )
- {
- NICE::ColorImage img = imgData.getColor ( z );
- NICE::MultiChannelImageT<double> cfeats;
- lfcw->getFeats ( img, cfeats );
- feats_tmp.addChannel ( cfeats );
- }
- else
- {
- cerr << "Can't compute weijer features of a grayscale image." << endl;
- }
- }
- if ( useGaussian )
- {
- vector<string> list;
- StringTools::split ( filelist[z], '/', list );
- string gaussPath = StringTools::trim ( filelist[z], list.back() ) + "gaussmap/" + list.back();
- NICE::Image gauss ( gaussPath );
- feats_tmp.addChannel ( gauss );
- //cout << "Added file " << gaussPath << " to feature stack " << endl;
- }
- // read the geometric cues produced by Hoiem et al.
- if ( useHoiemFeatures )
- {
- // we could also give the following set as a config option
- string hoiemClasses_s = "sky 000 090-045 090-090 090-135 090 090-por 090-sol";
- vector<string> hoiemClasses;
- StringTools::split ( hoiemClasses_s, ' ', hoiemClasses );
- // Now we have to do some fancy regular expressions :)
- // Original image filename: basel_000083.jpg
- // hoiem result: basel_000083_c_sky.png
- // Fancy class of Ferid which supports string handling especially for filenames
- FileName fn ( filelist[z] );
- fn.removeExtension();
- FileName fnBase = fn.extractFileName();
- // counter for the channel index, starts with the current size of the destination multi-channel image
- int currentChannel = feats_tmp.channels();
- // add a channel for each feature in advance
- feats_tmp.addChannel ( hoiemClasses.size() );
- // loop through all geometric categories and add the images
- for ( vector<string>::const_iterator i = hoiemClasses.begin(); i != hoiemClasses.end(); i++, currentChannel++ )
- {
- string hoiemClass = *i;
- FileName fnConfidenceImage ( hoiemDirectory + fnBase.str() + "_c_" + hoiemClass + ".png" );
- if ( ! fnConfidenceImage.fileExists() )
- {
- fthrow ( Exception, "Unable to read the Hoiem geometric confidence image: " << fnConfidenceImage.str() << " (original image is " << filelist[z] << ")" );
- }
- else
- {
- Image confidenceImage ( fnConfidenceImage.str() );
- // check whether the image size is consistent
- if ( confidenceImage.width() != feats_tmp.width() || confidenceImage.height() != feats_tmp.height() )
- {
- fthrow ( Exception, "The size of the geometric confidence image does not match with the original image size: " << fnConfidenceImage.str() );
- }
- ImageT<double> dst = feats_tmp[currentChannel];
- // copy standard image to double image
- for ( uint y = 0 ; y < ( uint ) confidenceImage.height(); y++ )
- for ( uint x = 0 ; x < ( uint ) confidenceImage.width(); x++ )
- feats_tmp ( x, y, currentChannel ) = ( double ) confidenceImage ( x, y );
- }
- }
- }
- uint oldChannels = feats.channels();
- if ( feats.channels() < feats_tmp.channels() )
- feats.addChannel ( feats_tmp.channels()-feats.channels() );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( uint r = oldChannels; r < ( uint ) feats_tmp.channels(); r++ )
- {
- feats.set ( x, y, z, feats_tmp.get ( x, y, r ), r );
- }
- }
- }
- }
- if ( useRegionFeature )
- {
- //using segmentation
- MultiChannelImageT<int> regions;
- regions.reInit( xsize, ysize, zsize );
- vector<int> chanSelect;
- for ( int i=0; i<3; i++ )
- chanSelect.push_back ( i );
- amountRegions = segmentation->segRegions ( imgData, regions, chanSelect );
- int cchannel = feats.channels();
- feats.addChannel ( 1 );
- for ( int z = 0; z < ( int ) regions.channels(); z++ )
- {
- for ( int y = 0; y < regions.height(); y++ )
- {
- for ( int x = 0; x < regions.width(); x++ )
- {
- feats.set ( x, y, z, regions ( x, y, ( uint ) z ), cchannel );
- }
- }
- }
- }
- }
- void SemSegContextTree::semanticseg ( NICE::MultiChannelImage3DT<double> & imgData,
- NICE::MultiChannelImageT<double> & segresult,
- NICE::MultiChannelImage3DT<double> & probabilities,
- const std::vector<std::string> & filelist )
- {
- int xsize = imgData.width();
- int ysize = imgData.height();
- int zsize = imgData.depth();
- firstiteration = true;
- int classes = labelmapback.size();
- int numClasses = classNames->numClasses();
- fprintf ( stderr, "ContextTree classification !\n" );
- probabilities.reInit ( xsize, ysize, zsize, numClasses );
- probabilities.setAll ( 0 );
- SparseVector *globalCategorFeat = new SparseVector();
- MultiChannelImage3DT<double> feats;
- // Basic Features
- int amountRegions;
- extractBasicFeatures ( feats, imgData, filelist, amountRegions ); //read image and do some simple transformations
- vector<int> rSize;
- if ( useRegionFeature )
- {
- rSize = vector<int> ( amountRegions, 0 );
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- rSize[feats ( x, y, z, rawChannels ) ]++;
- }
- }
- }
- }
- bool allleaf = false;
- MultiChannelImage3DT<unsigned short int> currentfeats ( xsize, ysize, zsize, nbTrees );
- currentfeats.setAll ( 0 );
- depth = 0;
- vector<vector<double> > regionProbs;
- if ( useRegionFeature )
- {
- regionProbs = vector<vector<double> > ( amountRegions, vector<double> ( classes, 0.0 ) );
- }
- for ( int d = 0; d < maxDepth && !allleaf; d++ )
- {
- depth++;
- vector<vector<double> > lastRegionProbs = regionProbs;
- if ( useRegionFeature )
- {
- int b_max = ( int ) regionProbs.size();
- for ( int b = 0; b < b_max; b++ )
- {
- int c_max = ( int ) regionProbs[b].size();
- for ( int c = 0; c < c_max; c++ )
- {
- regionProbs[b][c] = 0.0;
- }
- }
- }
- double weight = computeWeight ( depth, maxDepth ) - computeWeight ( depth - 1, maxDepth );
- if ( depth == 1 )
- {
- weight = computeWeight ( 1, maxDepth );
- }
- allleaf = true;
- MultiChannelImage3DT<unsigned short int> lastfeats = currentfeats;
- int tree;
- #pragma omp parallel for private(tree)
- for ( tree = 0; tree < nbTrees; tree++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- int t = currentfeats.get ( x, y, z, tree );
- if ( forest[tree][t].left > 0 )
- {
- allleaf = false;
- Features feat;
- feat.feats = &feats;
- feat.cfeats = &lastfeats;
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs;
- double val = forest[tree][t].feat->getVal ( feat, x, y, z );
- if ( !isfinite ( val ) )
- {
- val = 0.0;
- }
- if ( val < forest[tree][t].decision )
- {
- currentfeats.set ( x, y, z, forest[tree][t].left, tree );
- #pragma omp critical
- {
- if ( fasthik != NULL && useCategorization && forest[tree][forest[tree][t].left].nodeNumber < uniquenumber )
- ( *globalCategorFeat ) [forest[tree][forest[tree][t].left].nodeNumber] += weight;
- }
- }
- else
- {
- currentfeats.set ( x, y, z, forest[tree][t].right, tree );
- #pragma omp critical
- {
- if ( fasthik != NULL && useCategorization && forest[tree][forest[tree][t].right].nodeNumber < uniquenumber )
- ( *globalCategorFeat ) [forest[tree][forest[tree][t].right].nodeNumber] += weight;
- }
- }
- }
- }
- }
- }
- }
- if ( useRegionFeature )
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
- int zsize = currentfeats.depth();
- #pragma omp parallel for
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int node = currentfeats.get ( x, y, z, tree );
- for ( uint d = 0; d < forest[tree][node].dist.size(); d++ )
- {
- regionProbs[ ( int ) ( feats ( x, y, z, rawChannels ) ) ][d] += forest[tree][node].dist[d];
- }
- }
- }
- }
- }
- for ( int b = 0; b < ( int ) regionProbs.size(); b++ )
- {
- for ( int c = 0; c < ( int ) regionProbs[b].size(); c++ )
- {
- regionProbs[b][c] /= ( double ) ( rSize[b] );
- }
- }
- }
- if ( depth < maxDepth )
- {
- //compute integral images
- if ( firstiteration )
- {
- feats.addChannel ( classes + rawChannels );
- }
- computeIntegralImage ( currentfeats, feats, channelType.size() - classes );
- if ( firstiteration )
- {
- firstiteration = false;
- }
- }
- }
- int allClasses = ( int ) probabilities.channels();
- vector<int> useclass ( allClasses, 1 );
- vector<int> classesInImg;
- if ( useCategorization )
- {
- if ( cndir != "" )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- std::vector< std::string > list;
- StringTools::split ( filelist[z], '/', list );
- string orgname = list.back();
- ifstream infile ( ( cndir + "/" + orgname + ".dat" ).c_str() );
- while ( !infile.eof() && infile.good() )
- {
- int tmp;
- infile >> tmp;
- assert ( tmp >= 0 && tmp < allClasses );
- classesInImg.push_back ( tmp );
- }
- }
- }
- else
- {
- globalCategorFeat->setDim ( uniquenumber );
- globalCategorFeat->normalize();
- ClassificationResult cr = fasthik->classify ( globalCategorFeat );
- for ( uint i = 0; i < ( uint ) classes; i++ )
- {
- cerr << cr.scores[i] << " ";
- if ( cr.scores[i] > 0.0/*-0.3*/ )
- {
- classesInImg.push_back ( i );
- }
- }
- }
- cerr << "amount of classes: " << classes << " used classes: " << classesInImg.size() << endl;
- }
- if ( classesInImg.size() == 0 )
- {
- for ( uint i = 0; i < ( uint ) classes; i++ )
- {
- classesInImg.push_back ( i );
- }
- }
- if ( pixelWiseLabeling )
- {
- //finales labeln:
- //long int offset = 0;
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int z = 0; z < zsize; z++ )
- {
- double maxvalue = - numeric_limits<double>::max(); //TODO: das kann auch nur pro knoten gemacht werden, nicht pro pixel
- int maxindex = 0;
- for ( uint c = 0; c < classesInImg.size(); c++ )
- {
- int i = classesInImg[c];
- int currentclass = labelmapback[i];
- if ( useclass[currentclass] )
- {
- probabilities ( x, y, z, currentclass ) = getMeanProb ( x, y, z, i, currentfeats );
- if ( probabilities ( x, y, z, currentclass ) > maxvalue )
- {
- maxvalue = probabilities ( x, y, z, currentclass );
- maxindex = currentclass;
- }
- }
- }
- segresult.set ( x, y, maxindex, ( uint ) z );
- if ( maxvalue > 1 )
- cout << "maxvalue: " << maxvalue << endl;
- }
- }
- }
- #undef VISUALIZE
- #ifdef VISUALIZE
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
- {
- //cout << "class: " << j << endl;//" " << cn.text (j) << endl;
- NICE::Matrix tmp ( probabilities.height(), probabilities.width() );
- double maxval = -numeric_limits<double>::max();
- double minval = numeric_limits<double>::max();
- for ( int y = 0; y < probabilities.height(); y++ )
- for ( int x = 0; x < probabilities.width(); x++ )
- {
- double val = probabilities ( x, y, z, j );
- tmp ( y, x ) = val;
- maxval = std::max ( val, maxval );
- minval = std::min ( val, minval );
- }
- tmp ( 0, 0 ) = 1.0;
- tmp ( 0, 1 ) = 0.0;
- NICE::ColorImage imgrgb ( probabilities.width(), probabilities.height() );
- ICETools::convertToRGB ( tmp, imgrgb );
- cout << "maxval = " << maxval << " minval: " << minval << " for class " << j << endl; //cn.text (j) << endl;
- std::string s;
- std::stringstream out;
- out << "tmpprebmap" << j << ".ppm";
- s = out.str();
- imgrgb.write ( s );
- //showImage(imgrgb, "Ergebnis");
- //getchar();
- }
- }
- cout << "fertsch" << endl;
- getchar();
- cout << "weiter gehtsch" << endl;
- #endif
- }
- else
- {
- //using segmentation
- NICE::MultiChannelImageT<int> regions;
- int xsize = feats.width();
- int ysize = feats.height();
- int zsize = feats.depth();
- regions.reInit ( xsize, ysize, zsize );
- if ( useRegionFeature )
- {
- int rchannel = -1;
- for ( uint i = 0; i < channelType.size(); i++ )
- {
- if ( channelType[i] == 1 )
- {
- rchannel = i;
- break;
- }
- }
- assert ( rchannel > -1 );
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- regions.set ( x, y, feats ( x, y, z, rchannel ), ( uint ) z );
- }
- }
- }
- }
- else
- {
- amountRegions = 0;
- vector<int> chanSelect;
- for ( int i=0; i<3; i++ )
- chanSelect.push_back ( i );
- amountRegions = segmentation->segRegions ( imgData, regions, chanSelect );
- #ifdef DEBUG
- for ( unsigned int z = 0; z < ( uint ) zsize; z++ )
- {
- NICE::Matrix regmask;
- NICE::ColorImage colorimg ( xsize, ysize );
- NICE::ColorImage marked ( xsize, ysize );
- regmask.resize ( xsize, ysize );
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- regmask ( x,y ) = regions ( x,y,z );
- colorimg.setPixelQuick ( x, y, 0, imgData.get ( x,y,z,0 ) );
- colorimg.setPixelQuick ( x, y, 1, imgData.get ( x,y,z,0 ) );
- colorimg.setPixelQuick ( x, y, 2, imgData.get ( x,y,z,0 ) );
- }
- }
- vector<int> colorvals;
- colorvals.push_back ( 255 );
- colorvals.push_back ( 0 );
- colorvals.push_back ( 0 );
- segmentation->markContours ( colorimg, regmask, colorvals, marked );
- std::vector<string> list;
- StringTools::split ( filelist[z], '/', list );
- string savePath = StringTools::trim ( filelist[z], list.back() ) + "marked/" + list.back();
- marked.write ( savePath );
- }
- #endif
- }
- regionProbs.clear();
- regionProbs = vector<vector<double> > ( amountRegions, vector<double> ( classes, 0.0 ) );
- vector<int> bestlabels ( amountRegions, labelmapback[classesInImg[0]] );
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- int cregion = regions ( x, y, ( uint ) z );
- for ( uint c = 0; c < classesInImg.size(); c++ )
- {
- int d = classesInImg[c];
- regionProbs[cregion][d] += getMeanProb ( x, y, z, d, currentfeats );
- }
- }
- }
- }
- for ( int r = 0; r < amountRegions; r++ )
- {
- double maxval = regionProbs[r][classesInImg[0]];
- bestlabels[r] = classesInImg[0];
- for ( int d = 1; d < classes; d++ )
- {
- if ( maxval < regionProbs[r][d] )
- {
- maxval = regionProbs[r][d];
- bestlabels[r] = d;
- }
- }
- bestlabels[r] = labelmapback[bestlabels[r]];
- }
- for ( int z = 0; z < zsize; z++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- segresult.set ( x, y, bestlabels[regions ( x,y, ( uint ) z ) ], ( uint ) z );
- }
- }
- }
- //#define WRITEREGIONS
- #ifdef WRITEREGIONS
- for ( int z = 0; z < zsize; z++ )
- {
- RegionGraph rg;
- NICE::ColorImage img ( xsize,ysize );
- if ( imagetype == IMAGETYPE_RGB )
- {
- img = imgData.getColor ( z );
- }
- else
- {
- NICE::Image gray = imgData.getChannel ( z );
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- int val = gray.getPixelQuick ( x,y );
- img.setPixelQuick ( x, y, val, val, val );
- }
- }
- }
- Matrix regions_tmp ( xsize,ysize );
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- regions_tmp ( x,y ) = regions ( x,y, ( uint ) z );
- }
- }
- segmentation->getGraphRepresentation ( img, regions_tmp, rg );
- for ( uint pos = 0; pos < regionProbs.size(); pos++ )
- {
- rg[pos]->setProbs ( regionProbs[pos] );
- }
- std::string s;
- std::stringstream out;
- std::vector< std::string > list;
- StringTools::split ( filelist[z], '/', list );
- out << "rgout/" << list.back() << ".graph";
- string writefile = out.str();
- rg.write ( writefile );
- }
- #endif
- }
- cout << "segmentation finished" << endl;
- }
- void SemSegContextTree::store ( std::ostream & os, int format ) const
- {
- os.precision ( numeric_limits<double>::digits10 + 1 );
- os << nbTrees << endl;
- classnames.store ( os );
- map<int, int>::const_iterator it;
- os << labelmap.size() << endl;
- for ( it = labelmap.begin() ; it != labelmap.end(); it++ )
- os << ( *it ).first << " " << ( *it ).second << endl;
- os << labelmapback.size() << endl;
- for ( it = labelmapback.begin() ; it != labelmapback.end(); it++ )
- os << ( *it ).first << " " << ( *it ).second << endl;
- int trees = forest.size();
- os << trees << endl;
- for ( int t = 0; t < trees; t++ )
- {
- int nodes = forest[t].size();
- os << nodes << endl;
- for ( int n = 0; n < nodes; n++ )
- {
- os << forest[t][n].left << " " << forest[t][n].right << " " << forest[t][n].decision << " " << forest[t][n].isleaf << " " << forest[t][n].depth << " " << forest[t][n].featcounter << " " << forest[t][n].nodeNumber << endl;
- os << forest[t][n].dist << endl;
- if ( forest[t][n].feat == NULL )
- os << -1 << endl;
- else
- {
- os << forest[t][n].feat->getOps() << endl;
- forest[t][n].feat->store ( os );
- }
- }
- }
- os << channelType.size() << endl;
- for ( int i = 0; i < ( int ) channelType.size(); i++ )
- {
- os << channelType[i] << " ";
- }
- os << endl;
- os << integralMap.size() << endl;
- for ( int i = 0; i < ( int ) integralMap.size(); i++ )
- {
- os << integralMap[i].first << " " << integralMap[i].second << endl;
- }
- os << rawChannels << endl;
- os << uniquenumber << endl;
- }
- void SemSegContextTree::restore ( std::istream & is, int format )
- {
- is >> nbTrees;
- classnames.restore ( is );
- int lsize;
- is >> lsize;
- labelmap.clear();
- for ( int l = 0; l < lsize; l++ )
- {
- int first, second;
- is >> first;
- is >> second;
- labelmap[first] = second;
- }
- is >> lsize;
- labelmapback.clear();
- for ( int l = 0; l < lsize; l++ )
- {
- int first, second;
- is >> first;
- is >> second;
- labelmapback[first] = second;
- }
- int trees;
- is >> trees;
- forest.clear();
- for ( int t = 0; t < trees; t++ )
- {
- vector<TreeNode> tmptree;
- forest.push_back ( tmptree );
- int nodes;
- is >> nodes;
- for ( int n = 0; n < nodes; n++ )
- {
- TreeNode tmpnode;
- forest[t].push_back ( tmpnode );
- is >> forest[t][n].left;
- is >> forest[t][n].right;
- is >> forest[t][n].decision;
- is >> forest[t][n].isleaf;
- is >> forest[t][n].depth;
- is >> forest[t][n].featcounter;
- is >> forest[t][n].nodeNumber;
- is >> forest[t][n].dist;
- int feattype;
- is >> feattype;
- assert ( feattype < NBOPERATIONS );
- forest[t][n].feat = NULL;
- if ( feattype >= 0 )
- {
- for ( uint o = 0; o < ops.size(); o++ )
- {
- for ( uint o2 = 0; o2 < ops[o].size(); o2++ )
- {
- if ( forest[t][n].feat == NULL )
- {
- for ( uint c = 0; c < ops[o].size(); c++ )
- {
- if ( ops[o][o2]->getOps() == feattype )
- {
- forest[t][n].feat = ops[o][o2]->clone();
- break;
- }
- }
- }
- }
- }
- assert ( forest[t][n].feat != NULL );
- forest[t][n].feat->restore ( is );
- }
- }
- }
- channelType.clear();
- int ctsize;
- is >> ctsize;
- for ( int i = 0; i < ctsize; i++ )
- {
- int tmp;
- is >> tmp;
- channelType.push_back ( tmp );
- }
- integralMap.clear();
- int iMapSize;
- is >> iMapSize;
- for ( int i = 0; i < iMapSize; i++ )
- {
- int first;
- int second;
- is >> first;
- is >> second;
- integralMap.push_back ( pair<int, int> ( first, second ) );
- }
- is >> rawChannels;
- is >> uniquenumber;
- }
|