123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- // Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config <CONFIGFILE>
- /**
- * @file testSemanticSegmentation.cpp
- * @brief test semantic segmentation routines
- * @author Erik Rodner
- * @date 03/20/2008
- */
- #ifdef NICE_USELIB_OPENMP
- #include <omp.h>
- #endif
- // STL includes
- #include <fstream>
- // nice-core includes
- #include <core/basics/Config.h>
- #include <core/basics/StringTools.h>
- #include <core/basics/ResourceStatistics.h>
- // nice-vislearning includes
- #include <vislearning/baselib/ICETools.h>
- // nice-semseg includes
- #include <semseg/semseg/SemanticSegmentation.h>
- #include <semseg/semseg/SemSegLocal.h>
- #include <semseg/semseg/SemSegCsurka.h>
- #include <semseg/semseg/SemSegNovelty.h>
- #include <semseg/semseg/SemSegContextTree.h>
- using namespace OBJREC;
- using namespace NICE;
- using namespace std;
- void updateMatrix( const NICE::ImageT<int> & img, const NICE::ImageT<int> & gt,
- NICE::Matrix & M, const set<int> & forbidden_classes )
- {
- double subsamplex = gt.width() / ( double )img.width();
- double subsampley = gt.height() / ( double )img.height();
- for ( int y = 0 ; y < gt.height() ; y++ )
- for ( int x = 0 ; x < gt.width() ; x++ )
- {
- int xx = ( int )( x / subsamplex );
- int yy = ( int )( y / subsampley );
- if ( xx < 0 ) xx = 0;
- if ( yy < 0 ) yy = 0;
- if ( xx > img.width() - 1 ) xx = img.width() - 1;
- if ( yy > img.height() - 1 ) yy = img.height() - 1;
- int cimg = img.getPixel( xx, yy );
- int gimg = gt.getPixel( x, y );
- if ( forbidden_classes.find( gimg ) == forbidden_classes.end() )
- {
- M( gimg, cimg )++;
- }
- }
- }
- /**
- test semantic segmentation routines
- */
- int main( int argc, char **argv )
- {
- std::set_terminate( __gnu_cxx::__verbose_terminate_handler );
- Config conf( argc, argv );
-
- ResourceStatistics rs;
-
- bool show_result = conf.gB( "debug", "show_results", false );
- bool write_results = conf.gB( "debug", "write_results", false );
- bool write_results_pascal = conf.gB( "debug", "write_results_pascal", false );
- std::string resultdir = conf.gS( "debug", "resultdir", "." );
- if ( write_results )
- {
- cerr << "Writing Results to " << resultdir << endl;
- }
- MultiDataset md( &conf );
- const ClassNames & classNames = md.getClassNames( "train" );
- string method = conf.gS( "main", "method", "SSCsurka" );
- SemanticSegmentation *semseg = NULL;
- if ( method == "SSCsurka" )
- {
- semseg = new SemSegCsurka( &conf, &md );
- }
- else if ( method == "SSContext" )
- {
- semseg = new SemSegContextTree( &conf, &md );
- }
- else if( method == "SSNovelty" )
- {
- semseg = new SemSegNovelty( &conf, &md );
- }
- //SemanticSegmentation *semseg = new SemSegLocal ( &conf, &md );
- //SemanticSegmentation *semseg = new SemSegSTF ( &conf, &md );
- //SemanticSegmentation *semseg = new SemSegRegionBased(&conf, &md);
- const LabeledSet *testFiles = md["test"];
- NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 );
- M.set( 0 );
- set<int> forbidden_classes;
- std::string forbidden_classes_s = conf.gS( "analysis", "forbidden_classes", "" );
- classNames.getSelection( forbidden_classes_s, forbidden_classes );
- ProgressBar pb( "Semantic Segmentation Analysis" );
- pb.show();
- int fileno = 0;
- LOOP_ALL_S( *testFiles )
- {
- EACH_INFO( classno, info );
- std::string file = info.img();
- NICE::ImageT<int> lm;
- NICE::MultiChannelImageT<double> probabilities;
- if ( info.hasLocalizationInfo() )
- {
- const LocalizationResult *l_gt = info.localization();
- lm.resize( l_gt->xsize, l_gt->ysize );
- //lm.set( 0 );
- l_gt->calcLabeledImage( lm, classNames.getBackgroundClass() );
- }
- semseg->semanticseg( file, lm, probabilities );
- fprintf( stderr, "testSemanticSegmentation: Segmentation finished !\n" );
- NICE::ImageT<int> lm_gt;
- if ( info.hasLocalizationInfo() )
- {
- const LocalizationResult *l_gt = info.localization();
- lm_gt.resize( l_gt->xsize, l_gt->ysize );
- lm_gt.set( 0 );
- fprintf( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" );
- l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() );
- }
- std::string fname = StringTools::baseName( file, false );
- if ( write_results_pascal )
- {
- NICE::Image pascal_lm( lm.width(), lm.height() );
- int backgroundClass = classNames.getBackgroundClass();
- for ( int y = 0 ; y < lm.height(); y++ )
- for ( int x = 0 ; x < lm.width(); x++ )
- {
- int v = lm.getPixel( x, y );
- if ( v == backgroundClass )
- pascal_lm.setPixel( x, y, 255 );
- else
- pascal_lm.setPixel( x, y, 255 - v - 1 );
- }
- char filename[1024];
- char *format = ( char * )"pgm";
- sprintf( filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format );
- pascal_lm.write( filename );
- }
- if ( show_result || write_results )
- {
- NICE::ColorImage orig( file );
- NICE::ColorImage rgb;
- NICE::ColorImage rgb_gt;
- classNames.labelToRGB( lm, rgb );
- classNames.labelToRGB( lm_gt, rgb_gt );
- if ( write_results )
- {
- std::stringstream out;
- std::vector< std::string > myList;
- StringTools::split ( Globals::getCurrentImgFN (), '/', myList );
- out << resultdir << "/" << myList.back();
- cerr << "Writing to file " << resultdir << "/"<< myList.back() << endl;
- orig.write ( out.str() + "_orig.jpg" );
- rgb.write ( out.str() + "_result.png" );
- rgb_gt.write ( out.str() + "_groundtruth.png" );
- }
- if ( show_result )
- {
- #ifndef NOVISUAL
- showImage( rgb, "Result" );
- showImage( rgb_gt, "Groundtruth" );
- showImage( orig, "Input" );
- #endif
- }
- }
- //#pragma omp critical
- updateMatrix( lm, lm_gt, M, forbidden_classes );
- cerr << M << endl;
- fileno++;
- pb.update( testFiles->count() );
- }
- pb.hide();
- long maxMemory;
- rs.getMaximumMemory(maxMemory);
- cerr << "Maximum memory used: " << maxMemory << " KB" << endl;
-
- double overall = 0.0;
- double sumall = 0.0;
- for ( int r = 0; r < ( int )M.rows(); r++ )
- {
- for ( int c = 0; c < ( int )M.cols(); c++ )
- {
- if ( r == c )
- overall += M( r, c );
- sumall += M( r, c );
- }
- }
- overall /= sumall;
- // normalizing M using rows
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- double sum = 0.0;
- for ( int c = 0 ; c < ( int )M.cols() ; c++ )
- sum += M( r, c );
- if ( fabs( sum ) > 1e-4 )
- for ( int c = 0 ; c < ( int )M.cols() ; c++ )
- M( r, c ) /= sum;
- }
- cerr << M << endl;
- double avg_perf = 0.0;
- int classes_trained = 0;
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- avg_perf += M( r, r );
- double lsum = 0.0;
- for(int r2 = 0; r2 < ( int )M.rows(); r2++)
- {
- lsum += M(r,r2);
- }
- if(lsum != 0.0)
- {
- classes_trained++;
- }
- }
- }
- if ( write_results )
- {
- ofstream fout(( resultdir + "/res.txt" ).c_str(), ios::out );
- fout << "overall: " << overall << endl;
- fout << "Average Performance " << avg_perf / ( classes_trained ) << endl;
- fout << "Lower Bound " << 1.0 / classes_trained << endl;
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- std::string classname = classNames.text( r );
- fout << classname.c_str() << ": " << M( r, r ) << endl;
- }
- }
- fout.close();
- }
- fprintf( stderr, "overall: %f\n", overall );
- fprintf( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) );
- //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained);
- for ( int r = 0 ; r < ( int )M.rows() ; r++ )
- {
- if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) )
- {
- std::string classname = classNames.text( r );
- fprintf( stderr, "%s: %f\n", classname.c_str(), M( r, r ) );
- }
- }
- delete semseg;
- return 0;
- }
|