|
@@ -0,0 +1,296 @@
|
|
|
+/**
|
|
|
+* @file testImageNetBinaryBruteForce.cpp
|
|
|
+* @brief perform ImageNet tests with binary tasks for OCC
|
|
|
+* @author Alexander Lütz
|
|
|
+* @date 23-05-2012 (dd-mm-yyyy)
|
|
|
+
|
|
|
+*/
|
|
|
+#include "core/basics/Config.h"
|
|
|
+#include "core/vector/SparseVectorT.h"
|
|
|
+
|
|
|
+#include "vislearning/cbaselib/ClassificationResults.h"
|
|
|
+#include "vislearning/baselib/ProgressBar.h"
|
|
|
+
|
|
|
+#include "fast-hik/tools.h"
|
|
|
+#include "fast-hik/MatFileIO.h"
|
|
|
+#include "fast-hik/ImageNetData.h"
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+double measureDistance ( const NICE::SparseVector & a, const NICE::SparseVector & b, const double & sigma = 2.0, const bool & verbose = false)
|
|
|
+{
|
|
|
+ double inner_sum(0.0);
|
|
|
+
|
|
|
+ double s;
|
|
|
+ double d;
|
|
|
+
|
|
|
+ //this is the first version, where we needed on average 0.017988 s for each test sample
|
|
|
+// std::set<int> set_a;
|
|
|
+//
|
|
|
+//
|
|
|
+// for ( NICE::SparseVector::const_iterator i = a.begin(); i != a.end(); i++ )
|
|
|
+// {
|
|
|
+// double u (i->second);
|
|
|
+// double v (b.get(i->first));
|
|
|
+// s = ( u + v );
|
|
|
+// if ( fabs(s) < 10e-6 ) continue;
|
|
|
+// d = u-v;
|
|
|
+// inner_sum += d*d;
|
|
|
+// set_a.insert(i->first);
|
|
|
+// }
|
|
|
+//
|
|
|
+// for ( NICE::SparseVector::const_iterator i = b.begin(); i != b.end(); i++ )
|
|
|
+// {
|
|
|
+// if (set_a.find(i->first) != set_a.end()) //already worked on in first loop
|
|
|
+// continue;
|
|
|
+//
|
|
|
+// double u (i->second);
|
|
|
+// if ( fabs(u) < 10e-6 ) continue;
|
|
|
+// inner_sum += u*u;
|
|
|
+// }
|
|
|
+
|
|
|
+
|
|
|
+ //new version, where we needed on average 0.001707 s for each test sample
|
|
|
+ NICE::SparseVector::const_iterator aIt = a.begin();
|
|
|
+ NICE::SparseVector::const_iterator bIt = b.begin();
|
|
|
+
|
|
|
+ while ( (aIt != a.end()) && (bIt != b.end()) )
|
|
|
+ {
|
|
|
+// std::cerr << "a: " << aIt->first << " b: " << bIt->first << std::endl;
|
|
|
+ if (aIt->first == bIt->first)
|
|
|
+ {
|
|
|
+ s = ( aIt->second + bIt->second );
|
|
|
+// if (! fabs(s) < 10e-6 ) //for numerical reasons
|
|
|
+// {
|
|
|
+ d = ( aIt->second - bIt->second );
|
|
|
+ inner_sum += d * d;
|
|
|
+// }
|
|
|
+ aIt++;
|
|
|
+ bIt++;
|
|
|
+ }
|
|
|
+ else if ( aIt->first < bIt->first)
|
|
|
+ {
|
|
|
+// if (! fabs(aIt->second) < 10e-6 )
|
|
|
+// {
|
|
|
+ inner_sum += aIt->second * aIt->second;
|
|
|
+// }
|
|
|
+ aIt++;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+// if (! fabs(bIt->second) < 10e-6 )
|
|
|
+// {
|
|
|
+ inner_sum += bIt->second * bIt->second;
|
|
|
+// }
|
|
|
+ bIt++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //compute remaining values, if b reached the end but not a
|
|
|
+ while (aIt != a.end())
|
|
|
+ {
|
|
|
+ inner_sum += aIt->second * aIt->second;
|
|
|
+ aIt++;
|
|
|
+ }
|
|
|
+
|
|
|
+ //compute remaining values, if a reached the end but not b
|
|
|
+ while (bIt != b.end())
|
|
|
+ {
|
|
|
+ inner_sum += bIt->second * bIt->second;
|
|
|
+ bIt++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (verbose)
|
|
|
+ std::cerr << "inner_sum before /= (2.0*sigma*sigma) " << inner_sum << std::endl;
|
|
|
+
|
|
|
+ inner_sum /= (2.0*sigma*sigma);
|
|
|
+
|
|
|
+ if (verbose)
|
|
|
+ std::cerr << "inner_sum after /= (2.0*sigma*sigma) " << inner_sum << std::endl;
|
|
|
+ double expValue = exp(-inner_sum);
|
|
|
+ if (verbose)
|
|
|
+ std::cerr << "resulting expValue " << expValue << std::endl;
|
|
|
+
|
|
|
+ return exp(-inner_sum); //expValue;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+ test the basic functionality of fast-hik hyperparameter optimization
|
|
|
+*/
|
|
|
+int main (int argc, char **argv)
|
|
|
+{
|
|
|
+ std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
|
|
|
+
|
|
|
+ Config conf ( argc, argv );
|
|
|
+ string resultsfile = conf.gS("main", "results", "results.txt" );
|
|
|
+ int positiveClass = conf.gI("main", "positive_class");
|
|
|
+ double noise = conf.gD("main", "noise", 0.01);
|
|
|
+ double kernelSigma = conf.gD("main", "kernelSigma", 2.0);
|
|
|
+ int nrOfExamplesPerClass = conf.gI("main", "nrOfExamplesPerClass", 50);
|
|
|
+ nrOfExamplesPerClass = std::min(nrOfExamplesPerClass, 100); // we do not have more than 100 examples per class
|
|
|
+ int nrOfClassesToConcidere = conf.gI("main", "nrOfClassesToConcidere", 1000);
|
|
|
+ nrOfClassesToConcidere = std::min(nrOfClassesToConcidere, 1000); //we do not have more than 1000 classes
|
|
|
+
|
|
|
+ std::cerr << "Positive class is " << positiveClass << std::endl;
|
|
|
+
|
|
|
+ std::vector<SparseVector> trainingData;
|
|
|
+ NICE::Vector y;
|
|
|
+
|
|
|
+ std::cerr << "Reading ImageNet data ..." << std::endl;
|
|
|
+ bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
|
|
|
+ string imageNetPath;
|
|
|
+ if (imageNetLocal)
|
|
|
+ imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
|
|
|
+ else
|
|
|
+ imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
|
|
|
+
|
|
|
+ ImageNetData imageNetTrain ( imageNetPath + "demo/" );
|
|
|
+
|
|
|
+ imageNetTrain.preloadData( "train", "training" );
|
|
|
+ trainingData = imageNetTrain.getPreloadedData();
|
|
|
+ y = imageNetTrain.getPreloadedLabels();
|
|
|
+
|
|
|
+ std::cerr << "Reading of training data finished" << std::endl;
|
|
|
+ std::cerr << "trainingData.size(): " << trainingData.size() << std::endl;
|
|
|
+ std::cerr << "y.size(): " << y.size() << std::endl;
|
|
|
+
|
|
|
+ std::cerr << "Reading ImageNet test data files (takes some seconds)..." << std::endl;
|
|
|
+ ImageNetData imageNetTest ( imageNetPath + "demo/" );
|
|
|
+ imageNetTest.preloadData ( "val", "testing" );
|
|
|
+ imageNetTest.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
|
|
|
+
|
|
|
+ double OverallPerformance(0.0);
|
|
|
+
|
|
|
+ for (int cl = 0; cl < nrOfClassesToConcidere; cl++)
|
|
|
+ {
|
|
|
+ std::cerr << "run for class " << cl << std::endl;
|
|
|
+ // ------------------------------ TRAINING ------------------------------
|
|
|
+
|
|
|
+ NICE::Vector matrixDInv (nrOfExamplesPerClass, 0.0);
|
|
|
+ //compute D
|
|
|
+ //start with adding some noise, if necessary
|
|
|
+ if (noise != 0.0)
|
|
|
+ matrixDInv.set(noise);
|
|
|
+ else
|
|
|
+ matrixDInv.set(0.0);
|
|
|
+
|
|
|
+ std::cerr << "set matrixDInv to noise - now compute the scores for this special type of matrix" << std::endl;
|
|
|
+
|
|
|
+ if ( cl == 0)
|
|
|
+ {
|
|
|
+ std::cerr << "print first training example of class zero: " << std::endl;
|
|
|
+ trainingData[0] >> std::cerr;
|
|
|
+ }
|
|
|
+
|
|
|
+ //now sum up all entries of each row in the original kernel matrix
|
|
|
+ double kernelScore(0.0);
|
|
|
+ for (int i = cl*100; i < cl*100+nrOfExamplesPerClass; i++)
|
|
|
+ {
|
|
|
+// if ( (i % 50) == 0)
|
|
|
+ std::cerr << i << " / " << nrOfExamplesPerClass << std::endl;
|
|
|
+ for (int j = i; j < cl*100+nrOfExamplesPerClass; j++)
|
|
|
+ {
|
|
|
+// std::cerr << j << " / " << nrOfExamplesPerClass << std::endl;
|
|
|
+ if ( (cl == 0) && (i == 0))
|
|
|
+ {
|
|
|
+ kernelScore = measureDistance(trainingData[i],trainingData[j], kernelSigma, true /*verbose*/);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ kernelScore = measureDistance(trainingData[i],trainingData[j], kernelSigma);
|
|
|
+ if (kernelScore == 0.0) std::cerr << "score of zero for examples " << i << " and " << j << std::endl;
|
|
|
+ matrixDInv[i-cl*100] += kernelScore;
|
|
|
+ if (i != j)
|
|
|
+ matrixDInv[j-cl*100] += kernelScore;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cerr << "invert the main diagonal" << std::endl;
|
|
|
+
|
|
|
+ //compute its inverse
|
|
|
+ for (int i = 0; i < nrOfExamplesPerClass; i++)
|
|
|
+ {
|
|
|
+ matrixDInv[i] = 1.0 / matrixDInv[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cerr << "resulting D-Vector (or matrix :) ) " << std::endl;
|
|
|
+ std::cerr << matrixDInv << std::endl;
|
|
|
+
|
|
|
+ std::cerr << "training done - now perform the evaluation" << std::endl;
|
|
|
+
|
|
|
+
|
|
|
+ // ------------------------------ TESTING ------------------------------
|
|
|
+
|
|
|
+ ClassificationResults results;
|
|
|
+ std::cerr << "Classification step ... with " << imageNetTest.getNumPreloadedExamples() << " examples" << std::endl;
|
|
|
+ ProgressBar pb;
|
|
|
+ for ( uint i = 0 ; i < (uint)imageNetTest.getNumPreloadedExamples(); i++ )
|
|
|
+ {
|
|
|
+ pb.update ( imageNetTest.getNumPreloadedExamples() );
|
|
|
+
|
|
|
+ const SparseVector & svec = imageNetTest.getPreloadedExample ( i );
|
|
|
+// SparseVector svec = imageNetTest.getPreloadedExample ( i );
|
|
|
+
|
|
|
+ if ( i == 0)
|
|
|
+ {
|
|
|
+ std::cerr << "print first test example: " << std::endl;
|
|
|
+ std::cerr << "this is of class " << (int)imageNetTest.getPreloadedLabel ( i ) << std::endl;
|
|
|
+// svec >> std::cerr;
|
|
|
+ svec.store(std::cerr);
|
|
|
+ }
|
|
|
+
|
|
|
+ double kernelSelf (measureDistance(svec,svec, kernelSigma) ) ;
|
|
|
+ NICE::Vector kernelVector (nrOfExamplesPerClass, 0.0);
|
|
|
+
|
|
|
+ for (int j = 0; j < nrOfExamplesPerClass; j++)
|
|
|
+ {
|
|
|
+ kernelVector[j] = measureDistance(trainingData[j+cl*100],svec, kernelSigma);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( i == 0)
|
|
|
+ {
|
|
|
+ std::cerr << "print first kernel vector: " << kernelVector << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ NICE::Vector rightPart (nrOfExamplesPerClass);
|
|
|
+ for (int j = 0; j < nrOfExamplesPerClass; j++)
|
|
|
+ {
|
|
|
+ rightPart[j] = kernelVector[j] * matrixDInv[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ double uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
|
|
|
+
|
|
|
+ FullVector scores ( 2 );
|
|
|
+ scores[0] = 0.0;
|
|
|
+ scores[1] = 1.0 - uncertainty;
|
|
|
+
|
|
|
+ ClassificationResult r ( scores[1]<0.5 ? 0 : 1, scores );
|
|
|
+
|
|
|
+ // set ground truth label
|
|
|
+ r.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
|
|
|
+
|
|
|
+// std::cerr << "scores: " << std::endl;
|
|
|
+// scores >> std::cerr;
|
|
|
+// std::cerr << "gt: " << r.classno_groundtruth << " -- " << r.classno << std::endl;
|
|
|
+
|
|
|
+ results.push_back ( r );
|
|
|
+ }
|
|
|
+
|
|
|
+// std::cerr << "Writing results to " << resultsfile << std::endl;
|
|
|
+// results.writeWEKA ( resultsfile, 1 );
|
|
|
+ double perfvalue = results.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
|
|
|
+
|
|
|
+ std::cerr << "Performance: " << perfvalue << std::endl;
|
|
|
+
|
|
|
+ OverallPerformance += perfvalue;
|
|
|
+ }
|
|
|
+
|
|
|
+ OverallPerformance /= nrOfClassesToConcidere;
|
|
|
+
|
|
|
+ std::cerr << "overall performance: " << OverallPerformance << std::endl;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|