Browse Source

ConvolutionFeature: color image processing

Sven Sickert 10 years ago
parent
commit
0d6a32331e
2 changed files with 98 additions and 69 deletions
  1. 88 62
      features/fpfeatures/ConvolutionFeature.cpp
  2. 10 7
      features/fpfeatures/ConvolutionFeature.h

+ 88 - 62
features/fpfeatures/ConvolutionFeature.cpp

@@ -24,15 +24,20 @@ ConvolutionFeature::ConvolutionFeature ( )
 {
     window_size_x = 15;
     window_size_y = 15;
+    isColor = false;
 
     initializeParameterVector();
 }
 
 /** alternative constructor */
-ConvolutionFeature::ConvolutionFeature ( const int wsize_x, const int wsize_y )
+ConvolutionFeature::ConvolutionFeature (
+        const int wsize_x,
+        const int wsize_y,
+        const bool color )
 {
     window_size_x = wsize_x;
     window_size_y = wsize_y;
+    isColor = color;
 
     initializeParameterVector();
 }
@@ -40,8 +45,10 @@ ConvolutionFeature::ConvolutionFeature ( const int wsize_x, const int wsize_y )
 /** default constructor */
 ConvolutionFeature::ConvolutionFeature ( const Config *conf )
 {
-    window_size_x = conf->gI ( "ConvolutionFeature", "window_size_x", 15 );
-    window_size_y = conf->gI ( "ConvolutionFeature", "window_size_y", 15 );
+    std::string section = "ConvolutionFeature";
+    window_size_x = conf->gI ( section, "window_size_x", 15 );
+    window_size_y = conf->gI ( section, "window_size_y", 15 );
+    isColor = conf->gB ( section, "is_color", false );
 
     initializeParameterVector();
 }
@@ -51,8 +58,9 @@ ConvolutionFeature::ConvolutionFeature ( const ConvolutionFeature *confFeat )
 {
     window_size_x = confFeat->window_size_x;
     window_size_y = confFeat->window_size_y;
-    beta_length = confFeat->beta_length;
-    beta = new NICE::Vector( beta_length, 0.0 );
+    betaLength = confFeat->betaLength;
+    isColor = confFeat->isColor;
+    beta = new NICE::Vector( betaLength, 0.0 );
 
     int i = 0;
     for ( NICE::Vector::iterator it = confFeat->beta->begin();
@@ -74,12 +82,17 @@ void ConvolutionFeature::initializeParameterVector()
 {
     if (window_size_x > 0 && window_size_y > 0)
     {
-        beta_length = window_size_x*window_size_y + 1;
-        beta = new NICE::Vector( beta_length, (1.0/(double)(beta_length-1) ) );
+        if (isColor)
+            betaLength = 3*window_size_x*window_size_y + 1;
+        else
+            betaLength = window_size_x*window_size_y + 1;
+
+        beta = new NICE::Vector( betaLength, (1.0/(double)(betaLength-1) ) );
         beta[0] = 1;
     }
     else
-        std::cerr << "ConvolutionFeature::initializeVector: Size of window is Zero! Could not initialize..." << std::endl;
+        std::cerr << "ConvolutionFeature::initializeVector: Size of window is Zero! Could not initialize..."
+                  << std::endl;
 }
 
 /** return parameter vector */
@@ -92,10 +105,13 @@ NICE::Vector ConvolutionFeature::getParameterVector() const
 /** return feature vector */
 NICE::Vector ConvolutionFeature::getFeatureVector( const Example *example ) const
 {
-    NICE::Vector vec(window_size_x*window_size_y + 1, 1.0);;
+    NICE::Vector vec(betaLength, 1.0);
 
-    const NICE::MultiChannelImageT<int> & img =
-            example->ce->getIChannel( CachedExample::I_GRAYVALUES );
+    NICE::MultiChannelImageT<int> * img = NULL;
+    if (isColor)
+        img = & example->ce->getIChannel( CachedExample::I_COLOR );
+    else
+        img = & example->ce->getIChannel( CachedExample::I_GRAYVALUES );
 
     int xsize, ysize, x, y;
 
@@ -105,26 +121,27 @@ NICE::Vector ConvolutionFeature::getFeatureVector( const Example *example ) cons
 
     int halfwsx = std::floor ( window_size_x / 2 );
     int halfwsy = std::floor ( window_size_y / 2 );
+    int numChannels = img->channels();
 
     int k = 1;
-    for ( int v = -halfwsy; v <= halfwsy; v++ )
-        for ( int u = -halfwsx; u <= halfwsx; u++ )
-        {
-            int uu = u;
-            int vv = v;
-            if (x+u < 0 || x+u >= xsize) uu=-u;
-            if (y+v < 0 || y+v >= ysize) vv=-v;
-
-            if ( x+uu > 0
-                 && x+uu < xsize
-                 && y+vv > 0
-                 && y+vv < ysize
-                 && k < vec.size() )
+    for ( int c = 0; c < numChannels; c++ )
+        for ( int v = -halfwsy; v <= halfwsy; v++ )
+            for ( int u = -halfwsx; u <= halfwsx; u++, k++ )
             {
-                vec[k] = img.get(x+uu,y+vv);
+                int uu = u;
+                int vv = v;
+                if (x+u < 0 || x+u >= xsize) uu=-u;
+                if (y+v < 0 || y+v >= ysize) vv=-v;
+
+                if ( x+uu > 0
+                     && x+uu < xsize
+                     && y+vv > 0
+                     && y+vv < ysize
+                     && k < vec.size() )
+                {
+                    vec[k] = img->get(x+uu,y+vv,c);
+                }
             }
-            k++;
-        }
 
     return vec;
 }
@@ -132,7 +149,7 @@ NICE::Vector ConvolutionFeature::getFeatureVector( const Example *example ) cons
 /** return length of parameter vector */
 int ConvolutionFeature::getParameterLength() const
 {
-    return beta_length;
+    return betaLength;
 }
 
 /** set parameter vector */
@@ -141,35 +158,39 @@ void ConvolutionFeature::setParameterVector( const Vector & vec )
     if ( beta->size() == vec.size() )
     {
         int i = 0;
-        double sum = 0.0;
         for ( NICE::Vector::iterator it = beta->begin();
               it != beta->end(); ++it, i++ )
         {
             *it = vec[i];
-            sum = vec[i];
         }
-
-        // Normalize only kernel parameters
-        double betaZero = vec[0];
-        sum -= betaZero;
-        beta->operator/= (sum);
-        beta->operator[](0) = betaZero;
-
+        beta->normalizeL2();
     }
     else
-        std::cerr << "ConvolutionFeature::setParameterVector: Vector sizes do not match! Could not update parameter vector..." << std::endl;
+        std::cerr << "ConvolutionFeature::setParameterVector: Vector sizes do not match!"
+                  << " expected: " << beta->size() << ", got: " << vec.size()
+                  << std::endl;
 
 }
 
 /** return feature value */
 double ConvolutionFeature::val ( const Example *example ) const
 {
-    // is parameter vector initialized?
+    double val1 = 0.0;
+
+    // is parameter vector and image data available?
     if (beta == NULL)
-        return 0.0;
+    {
+        std::cerr << "ConvolutionalFeature::val: Missing parameter vector!"
+                  << std::endl;
+
+        return val1;
+    }
 
-    const NICE::MultiChannelImageT<int> & img =
-            example->ce->getIChannel( CachedExample::I_GRAYVALUES );
+    NICE::MultiChannelImageT<int> * img = NULL;
+    if (isColor)
+        img = & example->ce->getIChannel( CachedExample::I_COLOR );
+    else
+        img = & example->ce->getIChannel( CachedExample::I_GRAYVALUES );
 
     int xsize, ysize, x, y;
 
@@ -179,25 +200,26 @@ double ConvolutionFeature::val ( const Example *example ) const
 
     int halfwsx = std::floor ( window_size_x / 2 );
     int halfwsy = std::floor ( window_size_y / 2 );
+    int numChannels = img->channels();
 
     int k = 1;
-    double val1 = 0.0;
-    for ( int v = -halfwsy; v <= halfwsy; v++ )
-        for ( int u = -halfwsx; u <= halfwsx; u++, k++ )
-        {
-            int uu = u;
-            int vv = v;
-            if (x+u < 0 || x+u >= xsize) uu=-u;
-            if (y+v < 0 || y+v >= ysize) vv=-v;
-            if ( x+uu > 0
-                 && x+uu < xsize
-                 && y+vv > 0
-                 && y+vv < ysize
-                 && k < beta->size() )
+    for ( int c = 0; c < numChannels; c++ )
+        for ( int v = -halfwsy; v <= halfwsy; v++ )
+            for ( int u = -halfwsx; u <= halfwsx; u++, k++ )
             {
-                val1 += (double)img.get(x+uu,y+vv) * beta->operator [](k);
+                int uu = u;
+                int vv = v;
+                if (x+u < 0 || x+u >= xsize) uu=-u;
+                if (y+v < 0 || y+v >= ysize) vv=-v;
+                if ( x+uu > 0
+                     && x+uu < xsize
+                     && y+vv > 0
+                     && y+vv < ysize
+                     && k < beta->size() )
+                {
+                    val1 += (double)img->get(x+uu,y+vv,c) * beta->operator [](k);
+                }
             }
-        }
 
     return val1;
 }
@@ -206,7 +228,7 @@ double ConvolutionFeature::val ( const Example *example ) const
 void ConvolutionFeature::explode ( FeaturePool &featurePool, bool variableWindow ) const
 {
     ConvolutionFeature *f =
-            new ConvolutionFeature ( this->window_size_x, this->window_size_y );
+            new ConvolutionFeature ( this->window_size_x, this->window_size_y, this->isColor );
 
     featurePool.addFeature(f);
 }
@@ -215,7 +237,7 @@ void ConvolutionFeature::explode ( FeaturePool &featurePool, bool variableWindow
 Feature *ConvolutionFeature::clone ( ) const
 {
     ConvolutionFeature *f =
-            new ConvolutionFeature ( this->window_size_x, this->window_size_y );
+            new ConvolutionFeature ( this->window_size_x, this->window_size_y, this->isColor );
 
     f->setParameterVector( *beta );
 
@@ -231,9 +253,13 @@ void ConvolutionFeature::restore ( std::istream & is, int format )
 {
     is >> window_size_x;
     is >> window_size_y;
-    is >> beta_length;
+    is >> betaLength;
+
+    isColor = false;
+    if ( betaLength > (window_size_x*window_size_y+1) )
+        isColor = true;
 
-    beta = new NICE::Vector( beta_length, 1.0 );
+    beta = new NICE::Vector( betaLength, 1.0 );
     for ( NICE::Vector::iterator it = beta->begin();
           it != beta->end(); ++it )
         is >> *it;
@@ -244,7 +270,7 @@ void ConvolutionFeature::store ( std::ostream & os, int format ) const
     os << "ConvolutionFeature "
        << window_size_x << " "
        << window_size_y << " "
-       << beta_length;
+       << betaLength;
 
     for ( NICE::Vector::const_iterator it = beta->begin();
           it != beta->end(); ++it )

+ 10 - 7
features/fpfeatures/ConvolutionFeature.h

@@ -32,10 +32,16 @@ class ConvolutionFeature : public Feature
     /** feature parameter */
     int window_size_x;
     int window_size_y;
-    int beta_length;
+    int betaLength;
+    bool isColor;
 
     NICE::Vector *beta;
 
+    /**
+     * @brief (re)initialize parameter vector
+     */
+    void initializeParameterVector();
+
   public:
 
     ///////////////////// ///////////////////// /////////////////////
@@ -46,7 +52,9 @@ class ConvolutionFeature : public Feature
     ConvolutionFeature ( );
 
     /** alternative constructor */
-    ConvolutionFeature ( const int wsize_x, const int wsize_y );
+    ConvolutionFeature ( const int wsize_x,
+                         const int wsize_y,
+                         const bool color = false );
 
     /** default constructor */
     ConvolutionFeature ( const NICE::Config *conf );
@@ -62,11 +70,6 @@ class ConvolutionFeature : public Feature
     //                      FEATURE STUFF
     ///////////////////// ///////////////////// /////////////////////
 
-    /**
-     * @brief (re)initialize parameter vector
-     */
-    void initializeParameterVector();
-
     /**
      * @brief return parameter vector
      * @return parameter vector