|
@@ -160,8 +160,9 @@ void testFrame ( Config confRDF,
|
|
|
|
|
|
/*------------Initialize Variables-----------*/
|
|
|
ofstream storeEvalData;
|
|
|
+ double trainRatio = confRDF.gD( "debug", "training_ratio", .9 );
|
|
|
|
|
|
- int trainingSize = (int)(.2*xdata.size());
|
|
|
+ int trainingSize = (int)(trainRatio*xdata.size());
|
|
|
int testingSize = xdata.size() - trainingSize;
|
|
|
|
|
|
vector<int> indices;
|
|
@@ -216,9 +217,9 @@ void testFrame ( Config confRDF,
|
|
|
|
|
|
cerr << "Initializing leaf regression method " << leafReg << "...";
|
|
|
RegressionAlgorithm *leafRegression = NULL;
|
|
|
+ Kernel *kernel_function = NULL;
|
|
|
if ( leafReg == "GaussProcess" )
|
|
|
{
|
|
|
- Kernel *kernel_function = NULL;
|
|
|
kernel_function = new KernelExp ( *(kernel_template) );
|
|
|
leafRegression = new RegGaussianProcess( &confRDF, kernel_function, "GPRegression" );
|
|
|
}
|
|
@@ -266,6 +267,7 @@ void testFrame ( Config confRDF,
|
|
|
|
|
|
/*---------------Evaluation----------------*/
|
|
|
NICE::Vector diff = testVals - predictionValues;
|
|
|
+
|
|
|
double mod_var = diff.StdDev()*diff.StdDev();
|
|
|
double tar_var = testVals.StdDev()*testVals.StdDev();
|
|
|
mef_v.set( k, (1-mod_var/tar_var) );
|
|
@@ -282,6 +284,9 @@ void testFrame ( Config confRDF,
|
|
|
diff *= diff;
|
|
|
diff_v.set( k, diff.Mean());
|
|
|
resub_v.set( k, (diff.Mean() / tar_var) );
|
|
|
+
|
|
|
+ if (kernel_function != NULL)
|
|
|
+ delete kernel_function;
|
|
|
}
|
|
|
|
|
|
/*------------------Output-------------------*/
|
|
@@ -290,6 +295,9 @@ void testFrame ( Config confRDF,
|
|
|
cout << " Correlation: " << corr_v.Mean() << endl;
|
|
|
cout << " Mean Square Error: " << diff_v.Mean() << endl;
|
|
|
cout << " Standardized MSE: " << resub_v.Mean() << endl;
|
|
|
+
|
|
|
+ /*-----------------Cleaning------------------*/
|
|
|
+ delete kernel_template;
|
|
|
}
|
|
|
|
|
|
|