|
@@ -69,7 +69,7 @@ ClassificationResult FPCGPHIK::classify ( const NICE::SparseVector * example )
|
|
|
fthrow(Exception, "Classifier not trained yet -- aborting!" );
|
|
|
|
|
|
NICE::SparseVector scores;
|
|
|
- int result;
|
|
|
+ uint result;
|
|
|
|
|
|
double uncertainty;
|
|
|
|
|
@@ -78,11 +78,12 @@ ClassificationResult FPCGPHIK::classify ( const NICE::SparseVector * example )
|
|
|
if ( scores.size() == 0 ) {
|
|
|
fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << example->size() );
|
|
|
}
|
|
|
- int classes = scores.getDim();
|
|
|
+
|
|
|
+ uint classes = scores.getDim();
|
|
|
FullVector fvscores(classes);
|
|
|
|
|
|
NICE::SparseVector::const_iterator it;
|
|
|
- for(int c = 0; c < classes; c++)
|
|
|
+ for( uint c = 0; c < classes; c++ )
|
|
|
{
|
|
|
it = scores.find(c);
|
|
|
if ( it == scores.end() )
|
|
@@ -178,7 +179,7 @@ void FPCGPHIK::train ( FeaturePool & fp, Examples & examples )
|
|
|
}
|
|
|
|
|
|
/** training process */
|
|
|
-void FPCGPHIK::train ( const std::vector< const SparseVector *> & examples, std::map<int, NICE::Vector> & binLabels )
|
|
|
+void FPCGPHIK::train ( const std::vector< const SparseVector *> & examples, std::map< uint, NICE::Vector > & binLabels )
|
|
|
{
|
|
|
classifier->train(examples, binLabels);
|
|
|
}
|