|
@@ -0,0 +1,147 @@
|
|
|
+/**
|
|
|
+* @file testImageNetBinary.cpp
|
|
|
+* @brief perform ImageNet tests with binary tasks for OCC
|
|
|
+* @author Alexander Lütz
|
|
|
+* @date 23-05-2012 (dd-mm-yyyy)
|
|
|
+
|
|
|
+*/
|
|
|
+#include "core/basics/Config.h"
|
|
|
+
|
|
|
+#include "vislearning/cbaselib/ClassificationResults.h"
|
|
|
+#include "vislearning/baselib/ProgressBar.h"
|
|
|
+
|
|
|
+#include "fast-hik/tools.h"
|
|
|
+#include "fast-hik/MatFileIO.h"
|
|
|
+#include "fast-hik/ImageNetData.h"
|
|
|
+
|
|
|
+#include "vislearning/classifier/kernelclassifier/KCGPApproxOneClass.h"
|
|
|
+#include "vislearning/classifier/kernelclassifier/KCGPOneClass.h"
|
|
|
+
|
|
|
+#include "vislearning/math/kernels/KernelData.h"
|
|
|
+#include "vislearning/math/kernels/Kernel.h"
|
|
|
+#include "vislearning/math/kernels/KernelRBF.h"
|
|
|
+#include "vislearning/math/kernels/KernelExp.h"
|
|
|
+
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+ test the basic functionality of fast-hik hyperparameter optimization
|
|
|
+*/
|
|
|
+int main (int argc, char **argv)
|
|
|
+{
|
|
|
+ std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
|
|
|
+
|
|
|
+ Config conf ( argc, argv );
|
|
|
+ string resultsfile = conf.gS("main", "results", "results.txt" );
|
|
|
+ int positiveClass = conf.gI("main", "positive_class");
|
|
|
+
|
|
|
+ std::cerr << "Positive class is " << positiveClass << std::endl;
|
|
|
+
|
|
|
+ sparse_t data;
|
|
|
+ NICE::Vector y;
|
|
|
+
|
|
|
+ std::cerr << "Reading ImageNet data ..." << std::endl;
|
|
|
+ bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
|
|
|
+ string imageNetPath;
|
|
|
+ if (imageNetLocal)
|
|
|
+ imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
|
|
|
+ else
|
|
|
+ imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
|
|
|
+
|
|
|
+ ImageNetData imageNet ( imageNetPath + "demo/" );
|
|
|
+
|
|
|
+ imageNet.getBatchData ( data, y, "train", "training" );
|
|
|
+
|
|
|
+ //set up the kernel function
|
|
|
+ double rbf_sigma = conf.gD("main", "rbf_sigma", -2.0 );
|
|
|
+ KernelRBF kernelFunction ( rbf_sigma, 0.0 );
|
|
|
+ //KernelExp kernelFunction ( rbf_sigma, 0.0, 0.0 );
|
|
|
+
|
|
|
+ //set up our OC-classifier
|
|
|
+ string classifierName = conf.gS("main", "classifier", "KCGPApproxOneClass");
|
|
|
+
|
|
|
+ KernelClassifier *classifier;
|
|
|
+ if(strcmp("KCGPApproxOneClass",classifierName.c_str())==0)
|
|
|
+ {
|
|
|
+ classifier = new KCGPApproxOneClass ( &conf, &kernelFunction );
|
|
|
+ }
|
|
|
+ else if (strcmp("KCGPOneClass",classifierName.c_str())==0) {
|
|
|
+ classifier = new KCGPOneClass ( &conf, &kernelFunction );
|
|
|
+ }
|
|
|
+ else{ //default
|
|
|
+ classifier = new KCGPApproxOneClass ( &conf, &kernelFunction );
|
|
|
+ }
|
|
|
+ //and perform the training
|
|
|
+ //TODO how do we get a LabelSetSelection-Object out of our matlab data struct?
|
|
|
+// classifier->teach( train );
|
|
|
+
|
|
|
+ uint n = y.size();
|
|
|
+
|
|
|
+ set<int> positives;
|
|
|
+ set<int> negatives;
|
|
|
+
|
|
|
+ map< int, set<int> > mysets;
|
|
|
+ for ( uint i = 0 ; i < n; i++ )
|
|
|
+ mysets[ y[i] ].insert ( i );
|
|
|
+
|
|
|
+ if ( mysets[ positiveClass ].size() == 0 )
|
|
|
+ fthrow(Exception, "Class " << positiveClass << " is not available.");
|
|
|
+
|
|
|
+ // add our positive examples
|
|
|
+ for ( set<int>::const_iterator i = mysets[positiveClass].begin(); i != mysets[positiveClass].end(); i++ )
|
|
|
+ positives.insert ( *i );
|
|
|
+
|
|
|
+ int Nneg = conf.gI("main", "nneg", 1 );
|
|
|
+ for ( map<int, set<int> >::const_iterator k = mysets.begin(); k != mysets.end(); k++ )
|
|
|
+ {
|
|
|
+ int classno = k->first;
|
|
|
+ if ( classno == positiveClass )
|
|
|
+ continue;
|
|
|
+ const set<int> & s = k->second;
|
|
|
+ uint ind = 0;
|
|
|
+ for ( set<int>::const_iterator i = s.begin(); (i != s.end() && ind < Nneg); i++,ind++ )
|
|
|
+ negatives.insert ( *i );
|
|
|
+ }
|
|
|
+ std::cerr << "Number of positive examples: " << positives.size() << std::endl;
|
|
|
+ std::cerr << "Number of negative examples: " << negatives.size() << std::endl;
|
|
|
+
|
|
|
+ // ------------------------------ TESTING ------------------------------
|
|
|
+
|
|
|
+ std::cerr << "Reading ImageNet test data files (takes some seconds)..." << std::endl;
|
|
|
+ imageNet.preloadData ( "val", "testing" );
|
|
|
+ imageNet.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
|
|
|
+
|
|
|
+ ClassificationResults results;
|
|
|
+ std::cerr << "Classification step ... with " << imageNet.getNumPreloadedExamples() << " examples" << std::endl;
|
|
|
+ ProgressBar pb;
|
|
|
+ for ( uint i = 0 ; i < (uint)imageNet.getNumPreloadedExamples(); i++ )
|
|
|
+ {
|
|
|
+ pb.update ( imageNet.getNumPreloadedExamples() );
|
|
|
+
|
|
|
+ const SparseVector & svec = imageNet.getPreloadedExample ( i );
|
|
|
+ NICE::Vector vec;
|
|
|
+ svec.convertToVectorT( vec );
|
|
|
+
|
|
|
+ // classification step
|
|
|
+ ClassificationResult r = classifier->classify ( vec );
|
|
|
+
|
|
|
+ // set ground truth label
|
|
|
+ r.classno_groundtruth = (((int)imageNet.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
|
|
|
+ results.push_back ( r );
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cerr << "Writing results to " << resultsfile << std::endl;
|
|
|
+ results.writeWEKA ( resultsfile, 0 );
|
|
|
+ double perfvalue = results.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
|
|
|
+
|
|
|
+ std::cerr << "Performance: " << perfvalue << std::endl;
|
|
|
+
|
|
|
+ //don't waste memory
|
|
|
+ delete classifier;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|