|
@@ -0,0 +1,179 @@
|
|
|
+/**
|
|
|
+* @file CRSplineReg.cpp
|
|
|
+* @brief Implementation of Catmull-Rom-Splines for regression purposes
|
|
|
+* @author Frank Prüfer
|
|
|
+* @date 09/03/2013
|
|
|
+
|
|
|
+*/
|
|
|
+
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+#include "vislearning/regression/splineregression/CRSplineReg.h"
|
|
|
+
|
|
|
+#include "vislearning/math/mathbase/FullVector.h"
|
|
|
+
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+
|
|
|
+CRSplineReg::CRSplineReg ( )
|
|
|
+{
|
|
|
+ tau = 0.5;
|
|
|
+}
|
|
|
+
|
|
|
+CRSplineReg::CRSplineReg ( const CRSplineReg & src ) : RegressionAlgorithm ( src )
|
|
|
+{
|
|
|
+ tau = src.tau;
|
|
|
+ dataSet = src.dataSet;
|
|
|
+ labelSet = src.labelSet;
|
|
|
+}
|
|
|
+
|
|
|
+CRSplineReg::~CRSplineReg()
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+void CRSplineReg::teach ( const NICE::VVector & _dataSet, const NICE::Vector & _labelSet)
|
|
|
+{
|
|
|
+ fprintf (stderr, "teach using all !\n");
|
|
|
+ //NOTE this is crucial if we clear _teachSet afterwards!
|
|
|
+ //therefore, take care NOT to call _techSet.clear() somewhere out of this method
|
|
|
+ this->dataSet = _dataSet;
|
|
|
+ this->labelSet = _labelSet.std_vector();
|
|
|
+
|
|
|
+ std::cerr << "number of known training samples: " << this->dataSet.size() << std::endl;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+void CRSplineReg::teach ( const NICE::Vector & x, const double & y )
|
|
|
+{
|
|
|
+ std::cerr << "CRSplineReg::teach one new example" << std::endl;
|
|
|
+
|
|
|
+ for ( size_t i = 0 ; i < x.size() ; i++ )
|
|
|
+ if ( isnan(x[i]) )
|
|
|
+ {
|
|
|
+ fprintf (stderr, "There is a NAN value in within this vector: x[%d] = %f\n", (int)i, x[i]);
|
|
|
+ cerr << x << endl;
|
|
|
+ exit(-1);
|
|
|
+ }
|
|
|
+
|
|
|
+ dataSet.push_back ( x );
|
|
|
+
|
|
|
+ labelSet.push_back ( y );
|
|
|
+
|
|
|
+ std::cerr << "number of known training samples: " << dataSet.size()<< std::endl;
|
|
|
+}
|
|
|
+
|
|
|
+double CRSplineReg::predict ( const NICE::Vector & x )
|
|
|
+{
|
|
|
+
|
|
|
+ if ( dataSet.size() <= 0 ) {
|
|
|
+ fprintf (stderr, "CRSplineReg: please use the train method first\n");
|
|
|
+ exit(-1);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( dataSet[0].size() == 1 ){ //one-dimensional case
|
|
|
+ FullVector data ( dataSet.size()+1 );
|
|
|
+ for ( uint i = 0; i < dataSet.size(); i++ ){
|
|
|
+ data[i] = dataSet[i][0];
|
|
|
+ }
|
|
|
+ cerr<<"data x: "<<x[0]<<endl;
|
|
|
+ data[dataSet.size()] = x[0];
|
|
|
+
|
|
|
+ std::vector<int> ind;
|
|
|
+ data.getSortedIndices(ind);
|
|
|
+
|
|
|
+ int index;
|
|
|
+ for ( uint i = 0; i < ind.size(); i++ ){
|
|
|
+ if ( ind[i] == dataSet.size() ){
|
|
|
+ index = i;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ NICE::Matrix points (4,2,0.0);
|
|
|
+ if ( index >= 2 && index < (ind.size() - 2) ){ //everything is okay
|
|
|
+ points(0,0) = data[ind[index-2]];
|
|
|
+ points(0,1) = labelSet[ind[index-2]];
|
|
|
+ points(1,0) = data[ind[index-1]];
|
|
|
+ points(1,1) = labelSet[ind[index-1]];
|
|
|
+ points(2,0) = data[ind[index+1]];
|
|
|
+ points(2,1) = labelSet[ind[index+1]];
|
|
|
+ points(3,0) = data[ind[index+2]];
|
|
|
+ points(3,1) = labelSet[ind[index+2]];
|
|
|
+ }
|
|
|
+ else if ( index == 1 ){ //just one point left from x
|
|
|
+ points(0,0) = data[ind[index-1]];
|
|
|
+ points(0,1) = labelSet[ind[index-1]];
|
|
|
+ points(1,0) = data[ind[index-1]];
|
|
|
+ points(1,1) = labelSet[ind[index-1]];
|
|
|
+ points(2,0) = data[ind[index+1]];
|
|
|
+ points(2,1) = labelSet[ind[index+1]];
|
|
|
+ points(3,0) = data[ind[index+2]];
|
|
|
+ points(3,1) = labelSet[ind[index+2]];
|
|
|
+ }
|
|
|
+ else if ( index == 0 ){ //x is the farthest left point
|
|
|
+ //do linear approximation
|
|
|
+ }
|
|
|
+ else if ( index == (ind.size() - 2) ){ //just one point right from x
|
|
|
+ points(0,0) = data[ind[index-2]];
|
|
|
+ points(0,1) = labelSet[ind[index-2]];
|
|
|
+ points(1,0) = data[ind[index-1]];
|
|
|
+ points(1,1) = labelSet[ind[index-1]];
|
|
|
+ points(2,0) = data[ind[index+1]];
|
|
|
+ points(2,1) = labelSet[ind[index+1]];
|
|
|
+ points(3,0) = data[ind[index+1]];
|
|
|
+ points(3,1) = labelSet[ind[index+1]];
|
|
|
+ }
|
|
|
+ else if ( index == (ind.size() - 1) ){ //x is the farthest right point
|
|
|
+ //do linear approximation
|
|
|
+ }
|
|
|
+
|
|
|
+ double t = (x[0] - points(1,0)) / (points(2,0) - points(1,0));
|
|
|
+ cerr<<"t: "<<t<<endl;
|
|
|
+
|
|
|
+// NICE::Vector vecT(4,1.0);
|
|
|
+//
|
|
|
+// vecT[1] = t;
|
|
|
+// vecT[2] = t*t;
|
|
|
+// vecT[3] = t*t*t;
|
|
|
+//
|
|
|
+// Matrix coeffMatrix (4,4,0.0); // M = (0 2 0 0
|
|
|
+// coeffMatrix(0,1) = 2.0; // -1 0 1 0
|
|
|
+// coeffMatrix(1,0) = -1.0; // 2 -5 4 -1
|
|
|
+// coeffMatrix(1,2) = 1.0; // -1 3 -3 1)
|
|
|
+// coeffMatrix(2,0) = 2.0;
|
|
|
+// coeffMatrix(2,1) = -5.0;
|
|
|
+// coeffMatrix(2,2) = 4.0;
|
|
|
+// coeffMatrix(2,3) = -1.0;
|
|
|
+// coeffMatrix(3,0) = -1.0;
|
|
|
+// coeffMatrix(3,1) = 3.0;
|
|
|
+// coeffMatrix(3,2) = -3.0;
|
|
|
+// coeffMatrix(3,3) = 1.0;
|
|
|
+//
|
|
|
+// // P(t) = tau * vecT * coeffMatrix * points;
|
|
|
+// NICE::Vector P;
|
|
|
+// NICE::Matrix tmp;
|
|
|
+// tmp.multiply(coeffMatrix,points);
|
|
|
+// P.multiply(vecT,tmp);
|
|
|
+// P *= tau;
|
|
|
+
|
|
|
+ //P(t) = b0*P0 + b1*P1 + b2*P2 + b3*P3
|
|
|
+ NICE::Vector P(2);
|
|
|
+ double b0,b1,b2,b3;
|
|
|
+ b0 = tau * (-(t*t*t) + 2*t*t - t);
|
|
|
+ b1 = tau * (3*t*t*t - 5*t*t + 2);
|
|
|
+ b2 = tau * (-3*t*t*t + 4*t*t + t);
|
|
|
+ b3 = tau * (t*t*t - t*t);
|
|
|
+
|
|
|
+ P[0] = b0*points(0,0) + b1*points(1,0) + b2*points(2,0) + b3*points(3,0);
|
|
|
+ P[1] = b0*points(0,1) + b1*points(1,1) + b2*points(2,1) + b3*points(3,1);
|
|
|
+
|
|
|
+ cerr<<"Response x: "<<P[0]<<endl;
|
|
|
+ cerr<<"Response y: "<<P[1]<<endl;
|
|
|
+
|
|
|
+ return P[1];
|
|
|
+ }
|
|
|
+
|
|
|
+}
|