/** * @file HistFeature.cpp * @brief histogram integral feature * @author Erik Rodner * @date 05/07/2008 */ #include #include "HistFeature.h" #include "vislearning/cbaselib/FeaturePool.h" using namespace OBJREC; using namespace std; using namespace NICE; const double epsilon = 10e-8; /** simple constructor */ HistFeature::HistFeature ( const Config *conf, const std::string & section, int _histtype, int _numBins ) { window_size_x = conf->gI ( section, "window_size_x", 21 ); window_size_y = conf->gI ( section, "window_size_y", 21 ); scaleStep = conf->gD ( section, "scale_step", sqrt ( 2 ) ); numScales = conf->gI ( section, "num_scales", 5 ); flexibleGrid = conf->gB ( section, "flexible_grid", false ); cellcountx = conf->gI ( section, "cellcountx", 10 ); cellcounty = conf->gI ( section, "cellcounty", 10 ); histtype = _histtype; } /** simple destructor */ HistFeature::~HistFeature() { } double HistFeature::val ( const Example *example ) const { const NICE::MultiChannelImageT & img = example->ce->getDChannel ( histtype ); int tm_xsize = img.width(); int tm_ysize = img.height(); int xsize; int ysize; example->ce->getImageSize ( xsize, ysize ); /** without overlap: normalized cell and bin **/ int wsx2, wsy2; int exwidth = example->width; if ( exwidth == 0 ) { wsx2 = window_size_x * tm_xsize / ( 2 * xsize ); wsy2 = window_size_y * tm_ysize / ( 2 * ysize ); } else { int exheight = example->height; wsx2 = exwidth * tm_xsize / ( 2 * xsize ); wsy2 = exheight * tm_ysize / ( 2 * ysize ); } int xx, yy; xx = ( example->x ) * tm_xsize / xsize; yy = ( example->y ) * tm_ysize / ysize; assert ( ( wsx2 > 0 ) && ( wsy2 > 0 ) ); int xtl = xx - wsx2; int ytl = yy - wsy2; int xrb = xx + wsx2; int yrb = yy + wsy2; #define BOUND(x,min,max) (((x)<(min))?(min):((x)>(max)?(max):(x))) xtl = BOUND ( xtl, 0, tm_xsize - 1 ); ytl = BOUND ( ytl, 0, tm_ysize - 1 ); xrb = BOUND ( xrb, 0, tm_xsize - 1 ); yrb = BOUND ( yrb, 0, tm_ysize - 1 ); #undef BOUND double stepx = ( xrb - xtl ) / ( double ) ( cellcountx ); double stepy = ( yrb - ytl ) / ( double ) ( cellcounty ); int cxtl = ( int ) ( xtl + stepx * cellx1 ); int cytl = ( int ) ( ytl + stepy * celly1 ); int cxrb = ( int ) ( xtl + stepx * cellx2 ); int cyrb = ( int ) ( ytl + stepy * celly2 ); if ( cxrb <= cxtl ) cxrb = cxtl + 1; if ( cyrb <= cytl ) cyrb = cytl + 1; double A, B, C, D; assert ( bin < ( int ) img.channels() ); A = img.get ( cxtl, cytl, bin ); B = img.get ( cxrb, cytl, bin ); C = img.get ( cxtl, cyrb, bin ); D = img.get ( cxrb, cyrb, bin ); double val1 = ( D - B - C + A ); double sum = val1 * val1; for ( int b = 0 ; b < ( int ) img.channels() ; b++ ) { if ( b == bin ) continue; A = img.get ( cxtl, cytl, b ); B = img.get ( cxrb, cytl, b ); C = img.get ( cxtl, cyrb, b ); D = img.get ( cxrb, cyrb, b ); double val = ( D - B - C + A ); if ( normalizationMethod == HISTFEATURE_NORMMETHOD_L2 ) sum += val * val; else if ( normalizationMethod == HISTFEATURE_NORMMETHOD_L1 ) sum += val; } if ( normalizationMethod == HISTFEATURE_NORMMETHOD_L2 ) sum = sqrt ( sum ); return ( val1 + epsilon ) / ( sum + epsilon ); } void HistFeature::explode ( FeaturePool & featurePool, bool variableWindow ) const { int nScales = ( variableWindow ? numScales : 1 ); double weight = 1.0 / ( numBins * nScales ); if ( flexibleGrid ) weight *= 4.0 / ( cellcountx * ( cellcountx - 1 ) * ( cellcounty - 1 ) * cellcounty ); else weight *= 1.0 / ( cellcountx * cellcounty ); for ( int i = 0 ; i < nScales ; i++ ) { int wsy = window_size_y; int wsx = window_size_x; for ( int _cellx1 = 0 ; _cellx1 < cellcountx ; _cellx1++ ) for ( int _celly1 = 0 ; _celly1 < cellcounty ; _celly1++ ) for ( int _cellx2 = _cellx1 + 1 ; _cellx2 < ( flexibleGrid ? cellcountx : _cellx1 + 2 ) ; _cellx2++ ) for ( int _celly2 = _celly1 + 1 ; _celly2 < ( flexibleGrid ? cellcounty : _celly1 + 2 ) ; _celly2++ ) for ( int _bin = 0 ; _bin < numBins ; _bin++ ) { HistFeature *f = new HistFeature(); f->histtype = histtype; f->window_size_x = wsx; f->window_size_y = wsy; f->bin = _bin; f->cellx1 = _cellx1; f->celly1 = _celly1; f->cellx2 = _cellx2; f->celly2 = _celly2; f->cellcountx = cellcountx; f->cellcounty = cellcounty; featurePool.addFeature ( f, weight ); } wsx = ( int ) ( scaleStep * wsx ); wsy = ( int ) ( scaleStep * wsy ); } } Feature *HistFeature::clone() const { HistFeature *f = new HistFeature(); f->histtype = histtype; f->window_size_x = window_size_x; f->window_size_y = window_size_y; f->bin = bin; f->cellx1 = cellx1; f->celly1 = celly1; f->cellx2 = cellx2; f->celly2 = celly2; f->cellcountx = cellcountx; f->cellcounty = cellcounty; return f; } Feature *HistFeature::generateFirstParameter () const { return clone(); } void HistFeature::restore ( istream & is, int format ) { is >> histtype; is >> window_size_x; is >> window_size_y; is >> bin; is >> cellx1; is >> celly1; is >> cellx2; is >> celly2; is >> cellcountx; is >> cellcounty; } void HistFeature::store ( ostream & os, int format ) const { os << "HistFeature " << histtype << " " << window_size_x << " " << window_size_y << " " << bin << " " << cellx1 << " " << celly1 << " " << cellx2 << " " << celly2 << " " << cellcountx << " " << cellcounty; } void HistFeature::clear () { }