/** * @file Centrist.cpp * @brief Implementation of the Centrist feature published in "CENTRIST: A Visual Descriptor for Scene Categorization" (PAMI 2011) * @author Alexander Lütz * @date 12/06/2011 */ #include #include "vislearning/features/localfeatures/Centrist.h" #include "core/vector/VVector.h" using namespace OBJREC; using namespace std; using namespace NICE; /* protected methods*/ /** * @brief: perform centrist transformation for a single pixel * @author Alexander Lütz * @date 12/06/2011 */ //TODO maybe inline? int CensusTransform(const NICE::Image & img, const int & x, const int & y) { int index(0); if (! img.isWithinImage(x,y)) return index; if( (img.isWithinImage(x-1,y-1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x-1,y-1)) ) index |= 0x80; if( (img.isWithinImage(x-1,y)) && (img.getPixelInt(x,y)<=img.getPixelInt(x-1,y)) ) index |= 0x40; if( (img.isWithinImage(x-1,y+1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x-1,y+1)) ) index |= 0x20; if( (img.isWithinImage(x,y-1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x,y-1)) ) index |= 0x10; if( (img.isWithinImage(x,y+1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x,y+1)) ) index |= 0x08; if( (img.isWithinImage(x+1,y-1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x+1,y-1)) ) index |= 0x04; if( (img.isWithinImage(x+1,y)) && (img.getPixelInt(x,y)<=img.getPixelInt(x+1,y)) ) index |= 0x02; if( (img.isWithinImage(x+1,y+1)) && (img.getPixelInt(x,y)<=img.getPixelInt(x+1,y+1)) ) index |= 0x01; return index; } /** * @brief: perform centrist transformation for a single pixel * @author Alexander Lütz * @date 12/06/2011 */ //TODO maybe inline? int CensusTransform(const NICE::ColorImage & img, const int & x, const int & y, const int & channel) { int index(0); if (! img.isWithinImage(x,y)) return index; if( (img.isWithinImage(x-1,y-1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x-1,y-1, channel)) ) index |= 0x80; if( (img.isWithinImage(x-1,y)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x-1,y, channel)) ) index |= 0x40; if( (img.isWithinImage(x-1,y+1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x-1,y+1, channel)) ) index |= 0x20; if( (img.isWithinImage(x,y-1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x,y-1, channel)) ) index |= 0x10; if( (img.isWithinImage(x,y+1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x,y+1, channel)) ) index |= 0x08; if( (img.isWithinImage(x+1,y-1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x+1,y-1, channel)) ) index |= 0x04; if( (img.isWithinImage(x+1,y)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x+1,y, channel)) ) index |= 0x02; if( (img.isWithinImage(x+1,y+1)) && (img.getPixelInt(x,y, channel)<=img.getPixelInt(x+1,y+1, channel)) ) index |= 0x01; return index; } /** * @brief: generate CT histogram for a given rectangle: pixels in [xi yi]-(xa,ya) -- including (xi,yi) but excluding (xa,ya) * @author Alexander Lütz * @date 12/06/2011 */ void Centrist::GenerateHistForOneRect(const NICE::Image & img, const int & xi, const int & xa, const int & yi, const int & ya, NICE::Vector & feature) { // double pixelSum(0.0); // double pixelSquare(0.0); feature.resize(256); feature.set(0.0); for (int j = yi; j < ya; j++) { for (int i = xi; i < xa; i++) { // pixelSum += img.getPixelInt(i,j); // pixelSquare += img.getPixelInt(i,j)*img.getPixelInt(i,j); feature[CensusTransform(img,i,j)]++; } } // const double size ( (xa-xi)*(ya-yi)); // normalize histogram to have 0 mean, remove the first and last entry, and normalize to have unit norm double sum(feature.Sum()/256.0);//shift more efficient? // normalize histogram to have 0 mean //but why? feature -= sum; //remove the first and last entry feature[0] = 0.0; feature[255] = 0.0; //normalization - here done using unit L2-norm feature.normalizeL2(); } /** * @brief: generate CT histogram for a given rectangle: pixels in [xi yi]-(xa,ya) -- including (xi,yi) but excluding (xa,ya) * @author Alexander Lütz * @date 12/06/2011 */ void Centrist::GenerateHistForOneRect(const NICE::ColorImage & img, const int & xi, const int & xa, const int & yi, const int & ya, NICE::Vector & feature) { // double pixelSum(0.0); // double pixelSquare(0.0); int nrChannel (img.channels()); feature.resize(256*nrChannel); feature.set(0.0); for (int channel = 0; channel < nrChannel; channel++) { for (int j = yi; j < ya; j++) { for (int i = xi; i < xa; i++) { // pixelSum += img.getPixelInt(i,j, channel); // pixelSquare += img.getPixelInt(i,j, channel)*img.getPixelInt(i,j, channel); feature[256*channel+CensusTransform(img,i,j,channel)]++; } } } // const double size ( (xa-xi)*(ya-yi)) // normalize histogram to have 0 mean, remove the first and last entry, and normalize to have unit norm double sum(feature.Sum()/256.0);//shift more efficient? // normalize histogram to have 0 mean //but why? feature -= sum; //remove the first and last entry feature[0] = 0.0; feature[255] = 0.0; //normalization - here done using unit L2-norm feature.normalizeL2(); } /** * @brief Computes several CENTRIST descriptors for each of the given positions om a local neighborhood * @author Alexander Lütz * @date 12/06/2011 */ void Centrist::computeDesc( const NICE::Image & img, NICE::VVector & positions, NICE::VVector & descriptors ) { descriptors.clear(); for (NICE::VVector::const_iterator it = positions.begin(); it != positions.end(); it++) { NICE::Vector descriptor; GenerateHistForOneRect(img, (*it)[0]-sizeNeighborhood/2, (*it)[0]+sizeNeighborhood/2, (*it)[1]-sizeNeighborhood/2, (*it)[1]+sizeNeighborhood/2, descriptor); descriptors.push_back(descriptor); } } /** * @brief Computes several CENTRIST descriptors for each of the given positions om a local neighborhood * @author Alexander Lütz * @date 12/06/2011 */ void Centrist::computeDesc( const NICE::ColorImage & img, NICE::VVector & positions, NICE::VVector & descriptors ) { descriptors.clear(); for (NICE::VVector::const_iterator it = positions.begin(); it != positions.end(); it++) { NICE::Vector descriptor; GenerateHistForOneRect(img, (*it)[0]-sizeNeighborhood/2, (*it)[0]+sizeNeighborhood/2, (*it)[1]-sizeNeighborhood/2, (*it)[1]+sizeNeighborhood/2, descriptor); descriptors.push_back(descriptor); } } /* public methods*/ /** * @brief Default constructor * @author Alexander Lütz * @date 12/06/2011 */ Centrist::Centrist() { sizeNeighborhood = 16; } /** * @brief Recommended constructor * @author Alexander Lütz * @date 12/06/2011 */ Centrist::Centrist( const Config *conf, const std::string & section ) { sizeNeighborhood = conf->gI(section, "sizeNeighborhood", 16); } /** * @brief Default destructor * @author Alexander Lütz * @date 12/06/2011 */ Centrist::~Centrist() { } /** * @brief Computes several CENTRIST descriptors for each of the given positions on a local neighborhood * @author Alexander Lütz * @date 12/06/2011 */ int Centrist::getDescriptors ( const NICE::Image & img, VVector & positions, VVector & descriptors ) { computeDesc(img, positions, descriptors); return 0; } /** * @brief Computes several CENTRIST descriptors for each of the given positions on a local neighborhood * @author Alexander Lütz * @date 12/06/2011 */ int Centrist::getDescriptors ( const NICE::ColorImage & img, NICE::VVector & positions, NICE::VVector & descriptors) { computeDesc(img, positions, descriptors); return 0; } /** * @brief Visualizes CENTRIST descriptors, not implemented yet! * @author Alexander Lütz * @date 12/06/2011 */ void Centrist::visualizeFeatures ( NICE::Image & mark, const VVector & positions, size_t color ) const { // ice::Image mark_ice = ice::NewImg ( mark.width(), // mark.height(), 255 ); // for ( size_t k = 0 ; k < positions.size() ; k++ ) // { // const NICE::Vector & pos = positions[k]; // ice::Matrix points ( 0, 2 ); // const int size = 6; // points.Append ( ice::Vector(-size, -size) ); // points.Append ( ice::Vector(-size, size) ); // points.Append ( ice::Vector(size, size) ); // points.Append ( ice::Vector(size, -size) ); // // ice::Trafo tr; // // tr.Scale ( 0, 0, pos[2] ); // tr.Rotate ( 0, 0, pos[3] ); // tr.Shift ( pos[0], pos[1] ); // // ice::TransformList(tr, points); // // for ( int j = 0 ; j < points.rows(); j++ ) // { // if (points[j][0] < 0 ) // points[j][0] = 0; // if (points[j][0] >= mark_ice->xsize) // points[j][0] = mark_ice->xsize - 1; // if (points[j][1] < 0 ) // points[j][1] = 0; // if (points[j][1] >= mark_ice->ysize) // points[j][1] = mark_ice->ysize - 1; // } // ice::DrawPolygon ( points, color, mark_ice ); // } // // for ( unsigned int y = 0 ; y < mark.height(); y++ ) // for ( unsigned int x = 0 ; x < mark.width(); x++ ) // mark.setPixel(x,y, GetVal(mark_ice,x,y)); }