/** * @file ConvolutionFeature.cpp * @brief convolutional feature * @author Sven Sickert * @date 10/13/2008 */ #include #include "ConvolutionFeature.h" #include "vislearning/cbaselib/FeaturePool.h" using namespace OBJREC; using namespace std; using namespace NICE; /** simple constructor */ ConvolutionFeature::ConvolutionFeature ( ) { window_size_x = 15; window_size_y = 15; initializeParameterVector(); } /** default constructor */ ConvolutionFeature::ConvolutionFeature ( const Config *conf ) { window_size_x = conf->gI ( "ConvolutionFeature", "window_size_x", 15 ); window_size_y = conf->gI ( "ConvolutionFeature", "window_size_y", 15 ); initializeParameterVector(); } /** simple destructor */ ConvolutionFeature::~ConvolutionFeature ( ) { } /** (re)initialize parameter vector */ void ConvolutionFeature::initializeParameterVector() { if (window_size_x > 0 && window_size_y > 0) { beta_length = window_size_x*window_size_y; beta = new NICE::Vector( beta_length, (1.0/beta_length) ); } else std::cerr << "ConvolutionFeature::initializeVector: Size of window is Zero! Could not initialize..." << std::endl; } /** return parameter vector */ NICE::Vector ConvolutionFeature::getParameterVector() const { NICE::Vector res = (*this->beta); return res; } /** return feature vector */ NICE::Vector ConvolutionFeature::getFeatureVector( const Example *example ) { NICE::Vector vec(window_size_x*window_size_y, 0.0);; const NICE::MultiChannelImageT & img = example->ce->getIChannel( CachedExample::I_GRAYVALUES ); int xsize, ysize, x, y; example->ce->getImageSize( xsize, ysize ); x = example->x; y = example->y; int halfwsx = std::floor ( window_size_x / 2 ); int halfwsy = std::floor ( window_size_y / 2 ); int k = 0; for ( int v = -halfwsy; v <= halfwsy; v++ ) for ( int u = -halfwsx; u <= halfwsx; u++ ) { if ( x+u > 0 && x+u < xsize && y+v > 0 && y+v < ysize && k < vec.size() ) { vec[k] = img.get(x+u,y+v); } k++; } return vec; } /** return length of parameter vector */ int ConvolutionFeature::getParameterLength() const { return beta_length; } /** set parameter vector */ void ConvolutionFeature::setParameterVector( const Vector & vec ) { double sum = 0.0; if ( beta->size() == vec.size() ) { int i = 0; for ( NICE::Vector::iterator it = beta->begin(); it != beta->end(); ++it, i++ ) { *it = vec[i]; sum += vec[i]; } } else std::cerr << "ConvolutionFeature::setParameterVector: Vector sizes do not match! Could not update parameter vector..." << std::endl; if ( beta->Sum() != 1.0 ) (*beta) /= sum; } /** return feature value */ double ConvolutionFeature::val ( const Example *example ) const { // is parameter vector initialized? if (beta == NULL) return 0.0; const NICE::MultiChannelImageT & img = example->ce->getIChannel( CachedExample::I_GRAYVALUES ); int xsize, ysize, x, y; example->ce->getImageSize( xsize, ysize ); x = example->x; y = example->y; int halfwsx = std::floor ( window_size_x / 2 ); int halfwsy = std::floor ( window_size_y / 2 ); int k = 0; double val1 = 0.0; for ( int v = -halfwsy; v <= halfwsy; v++ ) for ( int u = -halfwsx; u <= halfwsx; u++, k++ ) { if ( x+u > 0 && x+u < xsize && y+v > 0 && y+v < ysize && k < beta->size() ) { val1 += (double)img.get(x+u,y+v) * beta->operator [](k); } } return std::floor(val1); } /** creature feature pool */ void ConvolutionFeature::explode ( FeaturePool &featurePool, bool variableWindow ) const { ConvolutionFeature *f = new ConvolutionFeature(); f->window_size_x = window_size_x; f->window_size_y = window_size_y; f->initializeParameterVector(); featurePool.addFeature(f); } /** clone current feature */ Feature *ConvolutionFeature::clone ( ) const { ConvolutionFeature *f = new ConvolutionFeature (); f->window_size_x = window_size_x; f->window_size_y = window_size_y; f->beta = beta; f->beta_length = beta_length; return f; } Feature *ConvolutionFeature::generateFirstParameter () const { return clone(); } void ConvolutionFeature::restore ( istream & is, int format ) { is >> window_size_x; is >> window_size_y; is >> beta_length; beta = new NICE::Vector( beta_length, 1.0 ); for ( NICE::Vector::iterator it = beta->begin(); it != beta->end(); ++it ) is >> *it; } void ConvolutionFeature::store ( ostream & os, int format ) const { os << "ConvolutionFeature " << window_size_x << " " << window_size_y << " " << beta_length; for ( NICE::Vector::const_iterator it = beta->begin(); it != beta->end(); ++it ) os << ' ' << *it; } void ConvolutionFeature::clear () { beta->clear(); }