/** * @file LinRegression.cpp * @brief Algorithm for linear regression * @author Frank Prüfer * @date 08/13/2013 */ #include "vislearning/regression/linregression/LinRegression.h" #include "core/vector/Algorithms.h" #include "LinRegression.h" using namespace OBJREC; using namespace std; using namespace NICE; LinRegression::LinRegression() { dim = 0; } LinRegression::LinRegression(uint dimension) { dim = dimension; } LinRegression::LinRegression ( const LinRegression & src ) : RegressionAlgorithm ( src ) { dim = src.dim; modelParams = src.modelParams; } LinRegression::~LinRegression() { } LinRegression* LinRegression::clone ( void ) const { return new LinRegression(*this); } void LinRegression::teach ( const NICE::VVector & x, const NICE::Vector & y ) { if (dim == 0){ //dimension not specified via constructor dim = x[0].size()+1; //use full dimension of data } for ( uint i = 0;i < dim;i++ ){ //initialize vector of model parameters modelParams.push_back(0.0); } if ( dim == 2 ) //two-dimensional least squares { double meanX; double meanY = y.Mean(); double sumX = 0.0; for ( uint i = 0;i < x.size();i++ ) sumX += x[i][0]; meanX = sumX / (double)x.size(); for ( uint i = 0; i < x.size(); i++ ) modelParams[1] += x[i][0] * y[i]; modelParams[1] -= x.size() * meanX * meanY; double tmp = 0.0; for ( uint i = 0; i < x.size(); i++ ) tmp += x[i][0] * x[i][0]; tmp -= x.size() * meanX * meanX; modelParams[1] /= tmp; modelParams[0] = meanY - modelParams[1] * meanX; } else { //N-dimensional least squares NICE::Matrix X, tmp, G; NICE::Vector params; x.toMatrix(X); NICE::Matrix Xtmp(X.rows(),X.cols()+1,1.0); // attach front column with ones for(uint row = 0;row LinRegression::getModelParams() { return modelParams; } double LinRegression::predict ( const NICE::Vector & x ) { double y; if ( dim == 2 ) //two-dimensional least squares { y = modelParams[0] + modelParams[1] * x[0]; } else { // y = x * modelParams NICE::Vector nModel(modelParams); NICE:: Vector xTmp(1,1.0); xTmp.append(x); y = xTmp.scalarProduct(nModel); } return y; }