// file: sift.ipp // author: Andrea Vedaldi // description: Sift inline members definition // AUTORIGHTS // Copyright (c) 2006 The Regents of the University of California // All Rights Reserved. // // Created by Andrea Vedaldi (UCLA VisionLab) // // Permission to use, copy, modify, and distribute this software and its // documentation for educational, research and non-profit purposes, // without fee, and without a written agreement is hereby granted, // provided that the above copyright notice, this paragraph and the // following three paragraphs appear in all copies. // // This software program and documentation are copyrighted by The Regents // of the University of California. The software program and // documentation are supplied "as is", without any accompanying services // from The Regents. The Regents does not warrant that the operation of // the program will be uninterrupted or error-free. The end-user // understands that the program was developed for research purposes and // is advised not to rely exclusively on the program for any reason. // // This software embodies a method for which the following patent has // been issued: "Method and apparatus for identifying scale invariant // features in an image and use of same for locating an object in an // image," David G. Lowe, US Patent 6,711,293 (March 23, // 2004). Provisional application filed March 8, 1999. Asignee: The // University of British Columbia. // // IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY // FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, // INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND // ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF // CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" // BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE // MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. /** ** @file ** @brief SIFT class - inline functions and members **/ #include #include namespace VL { namespace Detail { extern int const expnTableSize ; extern VL::float_t const expnTableMax ; extern VL::float_t expnTable [] ; } /** @brief Get width of source image ** @result width. **/ inline int Sift::getWidth() const { return width ; } /** @brief Get height of source image ** @result height. **/ inline int Sift::getHeight() const { return height ; } /** @brief Get width of an octave ** @param o octave index. ** @result width of octave @a o. **/ inline int Sift::getOctaveWidth(int o) const { assert( omin <= o && o < omin + O ) ; return (o >= 0) ? (width >> o) : (width << -o) ; } /** @brief Get height of an octave ** @param o octave index. ** @result height of octave @a o. **/ inline int Sift::getOctaveHeight(int o) const { assert( omin <= o && o < omin + O ) ; return (o >= 0) ? (height >> o) : (height << -o) ; } /** @brief Get octave ** @param o octave index. ** @return pointer to octave @a o. **/ inline VL::pixel_t * Sift::getOctave(int o) { assert( omin <= o && o < omin + O ) ; return octaves[o-omin] ; } /** @brief Get level ** @param o octave index. ** @param s level index. ** @result pointer to level @c (o,s). **/ inline VL::pixel_t * Sift::getLevel(int o, int s) { assert( omin <= o && o < omin + O ) ; assert( smin <= s && s <= smax ) ; return octaves[o - omin] + getOctaveWidth(o)*getOctaveHeight(o) * (s-smin) ; } /** @brief Get octave sampling period ** @param o octave index. ** @result Octave sampling period (in pixels). **/ inline VL::float_t Sift::getOctaveSamplingPeriod(int o) const { return (o >= 0) ? (1 << o) : 1.0f / (1 << -o) ; } /** @brief Convert index into scale ** @param o octave index. ** @param s scale index. ** @return scale. **/ inline VL::float_t Sift::getScaleFromIndex(VL::float_t o, VL::float_t s) const { return sigma0 * powf( 2.0f, o + s / S ) ; } /** @brief Get keypoint list begin ** @return iterator to the beginning. **/ inline Sift::KeypointsIter Sift::keypointsBegin() { return keypoints.begin() ; } /** @brief Get keypoint list end ** @return iterator to the end. **/ inline Sift::KeypointsIter Sift::keypointsEnd() { return keypoints.end() ; } /** @brief Set normalize descriptor flag */ inline void Sift::setNormalizeDescriptor(bool flag) { normalizeDescriptor = flag ; } /** @brief Get normalize descriptor flag */ inline bool Sift::getNormalizeDescriptor() const { return normalizeDescriptor ; } /** @brief Set descriptor magnification */ inline void Sift::setMagnification(VL::float_t _magnif) { magnif = _magnif ; } /** @brief Get descriptor magnification */ inline VL::float_t Sift::getMagnification() const { return magnif ; } /** @brief Fast @ exp(-x) ** ** The argument must be in the range 0-25.0 (bigger arguments may be ** truncated to zero). ** ** @param x argument. ** @return @c exp(-x) **/ inline VL::float_t fast_expn(VL::float_t x) { assert(VL::float_t(0) <= x && x <= Detail::expnTableMax) ; #ifdef VL_USEFASTMATH x *= Detail::expnTableSize / Detail::expnTableMax ; VL::int32_t i = fast_floor(x) ; VL::float_t r = x - i ; VL::float_t a = VL::Detail::expnTable[i] ; VL::float_t b = VL::Detail::expnTable[i+1] ; return a + r * (b - a) ; #else return exp(-x) ; #endif } /** @brief Fast @c mod(x,2pi) ** ** The function quickly computes the value @c mod(x,2pi). ** ** @remark The computation is fast only for arguments @a x which are ** small in modulus. ** ** @remark For negative arguments, the semantic of the function is ** not equivalent to the standard library @c fmod function. ** ** @param x function argument. ** @return @c mod(x,2pi) **/ inline VL::float_t fast_mod_2pi(VL::float_t x) { #ifdef VL_USEFASTMATH while(x < VL::float_t(0) ) x += VL::float_t(2*M_PI) ; while(x > VL::float_t(2*M_PI) ) x -= VL::float_t(2*M_PI) ; return x ; #else return (x>=0) ? std::fmod(x, VL::float_t(2*M_PI)) : 2*M_PI + std::fmod(x, VL::float_t(2*M_PI)) ; #endif } /** @brief Fast @c (int) floor(x) ** @param x argument. ** @return @c float(x) **/ inline int32_t fast_floor(VL::float_t x) { #ifdef VL_USEFASTMATH return (x>=0)? int32_t(x) : std::floor(x) ; // return int32_t( x - ((x>=0)?0:1) ) ; #else return int32_t( std::floor(x) ) ; #endif } /** @brief Fast @c abs(x) ** @param x argument. ** @return @c abs(x) **/ inline VL::float_t fast_abs(VL::float_t x) { #ifdef VL_USEFASTMATH return (x >= 0) ? x : -x ; #else return std::fabs(x) ; #endif } /** @brief Fast @c atan2 ** @param x argument. ** @param y argument. ** @return Approximation of @c atan2(x). **/ inline VL::float_t fast_atan2(VL::float_t y, VL::float_t x) { #ifdef VL_USEFASTMATH /* The function f(r)=atan((1-r)/(1+r)) for r in [-1,1] is easier to approximate than atan(z) for z in [0,inf]. To approximate f(r) to the third degree we may solve the system f(+1) = c0 + c1 + c2 + c3 = atan(0) = 0 f(-1) = c0 - c1 + c2 - c3 = atan(inf) = pi/2 f(0) = c0 = atan(1) = pi/4 which constrains the polynomial to go through the end points and the middle point. We still miss a constrain, which might be simply a constarint on the derivative in 0. Instead we minimize the Linf error in the range [0,1] by searching for an optimal value of the free parameter. This turns out to correspond to the solution c0=pi/4, c1=-0.9675, c2=0, c3=0.1821 which has maxerr = 0.0061 rad = 0.35 grad. */ VL::float_t angle, r ; VL::float_t const c3 = 0.1821 ; VL::float_t const c1 = 0.9675 ; VL::float_t abs_y = fast_abs(y) + VL::float_t(1e-10) ; if (x >= 0) { r = (x - abs_y) / (x + abs_y) ; angle = VL::float_t(M_PI/4.0) ; } else { r = (x + abs_y) / (abs_y - x) ; angle = VL::float_t(3*M_PI/4.0) ; } angle += (c3*r*r - c1) * r ; return (y < 0) ? -angle : angle ; #else return std::atan2(y,x) ; #endif } /** @brief Fast @c resqrt ** @param x argument. ** @return Approximation to @c resqrt(x). **/ inline float fast_resqrt(float x) { #ifdef VL_USEFASTMATH // Works if VL::float_t is 32 bit ... union { float x ; VL::int32_t i ; } u ; float xhalf = float(0.5) * x ; u.x = x ; // get bits for floating value u.i = 0x5f3759df - (u.i>>1); // gives initial guess y0 //u.i = 0xdf59375f - (u.i>>1); // gives initial guess y0 u.x = u.x*(float(1.5) - xhalf*u.x*u.x); // Newton step (may repeat) u.x = u.x*(float(1.5) - xhalf*u.x*u.x); // Newton step (may repeat) return u.x ; #else return float(1.0) / std::sqrt(x) ; #endif } /** @brief Fast @c resqrt ** @param x argument. ** @return Approximation to @c resqrt(x). **/ inline double fast_resqrt(double x) { #ifdef VL_USEFASTMATH // Works if double is 64 bit ... union { double x ; VL::int64_t i ; } u ; double xhalf = double(0.5) * x ; u.x = x ; // get bits for floating value u.i = 0x5fe6ec85e7de30daLL - (u.i>>1); // gives initial guess y0 u.x = u.x*(double(1.5) - xhalf*u.x*u.x); // Newton step (may repeat) u.x = u.x*(double(1.5) - xhalf*u.x*u.x); // Newton step (may repeat) return u.x ; #else return double(1.0) / std::sqrt(x) ; #endif } /** @brief Fast @c sqrt ** @param x argument. ** @return Approximation to @c sqrt(x). **/ inline VL::float_t fast_sqrt(VL::float_t x) { #ifdef VL_USEFASTMATH return (x < 1e-8) ? 0 : x * fast_resqrt(x) ; #else return std::sqrt(x) ; #endif } } // Emacs: // Local Variables: // mode: C++ // End: