/** * @file FPCGPHIK.cpp * @brief feature pool interface for our GP HIK classifier * @author Alexander Freytag * @date 02/01/2012 */ #include #include "core/basics/numerictools.h" #include #include "FPCGPHIK.h" using namespace std; using namespace NICE; using namespace OBJREC; FPCGPHIK::FPCGPHIK( const Config *conf, const string & confSection ) { this->verbose = conf->gB(confSection, "verbose", false); this->useSimpleBalancing = conf->gB(confSection, "use_simple_balancing", false); this->minSamples = conf->gI(confSection, "min_samples", -1); this->performOptimizationAfterIncrement = conf->gB(confSection, "performOptimizationAfterIncrement", true); classifier = new GPHIKClassifier(conf, confSection); } FPCGPHIK::~FPCGPHIK() { if ( classifier != NULL ) delete classifier; } ClassificationResult FPCGPHIK::classify ( Example & pe ) { const SparseVector *svec = pe.svec; if ( svec == NULL ) fthrow(Exception, "FPCGPHIK requires example.svec (SparseVector stored in an Example struct)"); return this->classify( svec ); } ClassificationResult FPCGPHIK::classify ( const NICE::SparseVector * example ) { NICE::SparseVector scores; int result; double uncertainty; classifier->classify ( example, result, scores, uncertainty); if ( scores.size() == 0 ) { fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << example->size() ); } int classes = scores.getDim(); FullVector fvscores(classes); NICE::SparseVector::const_iterator it; for(int c = 0; c < classes; c++) { it = scores.find(c); if ( it == scores.end() ) fvscores[c] = -std::numeric_limits::max(); else fvscores[c] = it->second; } ClassificationResult r ( fvscores.maxElement(), fvscores ); r.uncertainty = uncertainty; if (verbose) { std::cerr << " FPCGPHIK::classify scores" << std::endl; scores.store(std::cerr); std::cerr << " FPCGPHIK::classify fvscores" << std::endl; fvscores.store(std::cerr); } return r; } /** training process */ void FPCGPHIK::train ( FeaturePool & fp, Examples & examples ) { // we completely ignore the feature pool :) // initRand(0); Vector classCounts; int minClass = -1; if (verbose) std::cerr << "FPCGPHIK::train" << std::endl; if ( useSimpleBalancing) { classCounts.resize( examples.getMaxClassNo()+1 ); classCounts.set( 0.0 ); for ( uint i = 0 ; i < examples.size() ; i++ ) classCounts[ examples[i].first ]++; // we need a probability distribution //classCounts.normalizeL1(); // we need the class index of the class with the least non-zero examples for ( uint i = 0 ; i < classCounts.size(); i++ ) if ( (classCounts[i] > 0) && ((minClass < 0) || (classCounts[i] < classCounts[minClass])) ) minClass = i; if (verbose) { cerr << "Class distribution: " << classCounts << endl; cerr << "Class with the least number of examples: " << minClass << endl; } if(minSamples < 0) minSamples = classCounts[minClass]; } // (multi-class) label vector Vector y ( examples.size() /* maximum size */ ); // flat structure of our training data std::vector< SparseVector * > sparseExamples; if (verbose) cerr << "Converting (and sampling) feature vectors" << endl; for ( uint i = 0 ; i < examples.size() ; i++ ) { const Example & example = examples[i].second; int classno = examples[i].first; // simple weird balancing method if ( useSimpleBalancing ) { double t = randDouble() * classCounts[classno]; if ( t >= minSamples ) continue; } y[ sparseExamples.size() ] = classno; if ( example.svec == NULL ) fthrow(Exception, "FPCGPHIK requires example.svec (SparseVector stored in an Example struct)"); sparseExamples.push_back( example.svec ); } // we only use a subset for training y.resize( sparseExamples.size() ); classifier->train(sparseExamples, y); } /** training process */ void FPCGPHIK::train ( const std::vector< SparseVector *> & examples, std::map & binLabels ) { classifier->train(examples, binLabels); } void FPCGPHIK::clear () { if ( classifier != NULL ) delete classifier; classifier = NULL; } FeaturePoolClassifier *FPCGPHIK::clone () const { fthrow(Exception, "FPCGPHIK: clone() not yet implemented" ); return NULL; } void FPCGPHIK::predictUncertainty( Example & pe, NICE::Vector & uncertainties ) { const SparseVector *svec = pe.svec; if ( svec == NULL ) fthrow(Exception, "FPCGPHIK requires example.svec (SparseVector stored in an Example struct)"); classifier->predictUncertainty(svec, uncertainties); } void FPCGPHIK::predictUncertainty( const NICE::SparseVector * example, NICE::Vector & uncertainties ) { classifier->predictUncertainty(example, uncertainties); } //--------------------------------------------------------------------- // protected methods //--------------------------------------------------------------------- void FPCGPHIK::restore ( std::istream & is, int format ) { if (is.good()) { classifier->restore(is, format); std::string tmp; is >> tmp; //"performOptimizationAfterIncrement: " is >> this->performOptimizationAfterIncrement; } else { std::cerr << "FPCGPHIK::restore -- InStream not initialized - restoring not possible!" << std::endl; } } void FPCGPHIK::store ( std::ostream & os, int format ) const { if (os.good()) { os.precision (numeric_limits::digits10 + 1); classifier->store(os, format); os << "performOptimizationAfterIncrement: " << performOptimizationAfterIncrement << std::endl; } else { std::cerr << "OutStream not initialized - storing not possible!" << std::endl; } } void FPCGPHIK::addExample( const Example & pe, const double & label) { const SparseVector *svec = pe.svec; classifier->addExample(svec, label, this->performOptimizationAfterIncrement); } void FPCGPHIK::addMultipleExamples( Examples & newExamples) { //are new examples available? If not, nothing has to be done if ( newExamples.size() < 1) return; // (multi-class) label vector Vector y ( newExamples.size() ); // flat structure of our training data std::vector< const SparseVector * > sparseExamples; if (verbose) cerr << "Converting (and sampling) feature vectors" << endl; for ( uint i = 0 ; i < newExamples.size() ; i++ ) { const Example & example = newExamples[i].second; int classno = newExamples[i].first; y[ i ] = classno; if ( example.svec == NULL ) fthrow(Exception, "FPCGPHIK requires example.svec (SparseVector stored in an Example struct)"); sparseExamples.push_back( example.svec ); } classifier->addMultipleExamples(sparseExamples, y, this->performOptimizationAfterIncrement); }