// STL includes #include #include #include // nice-core includes #include #include // #include #include // nice-vislearning includes #include using namespace std; using namespace NICE; using namespace OBJREC; /** * @brief Printing main menu. * @author Alexander Freytag * @date 13-02-2013 * * @return void **/ void print_main_menu() { std::cerr << "=====================================================================================" << std::endl; std::cerr << "||This is a small programm demonstrating the computation of 11-dim color features. ||" << std::endl; std::cerr << "=====================================================================================" << std::endl; std::cout << std::endl << "Input options:" << std::endl; std::cout << " -i the name of the image which shall be transformed"<< std::endl; return; } //post-process active learning segmentation results, such that the given images are normalized to be visualized in the same range int main( int argc, char* argv[] ) { int rc; if (argc<2) { print_main_menu(); return -1; } if ( (argc+1)%2 != 0 ) { std::cerr << " WARNING -- even number of inputs required (specifier + value ) -- aborting... " << std::endl; return -1; } std::string filename(""); while ((rc=getopt(argc,argv,"i:h"))>=0) { switch(rc) { case 'i': filename = optarg; break; default: print_main_menu(); } } NICE::Config *conf = new NICE::Config(); OBJREC::LocalFeatureColorWeijer lfc(conf); //! testen NICE::ColorImage cimg; cimg.read( filename ); NICE::ColorImage out; lfc.visualizeFeatures (cimg, out); cimg.writePPM("org.ppm"); out.writePPM("out.ppm"); delete conf; return 0; }