% brief: Unit testing of the CodebookRandomForest functions (ERC) % author: Johannes Ruehle % date: 11-04-2014 (dd-mm-yyyy) %% test Creation of OBJREC::Examples class from sample matrix and label data numSamples = 10000; numFeatures = 5; maxClass = 3; matFeatures = rand(numSamples, numFeatures, 'double')'; matLabels = randi(maxClass, numSamples,1,'double'); %% create and train hClassifier = CodebookRandomForestMex('createAndTrain',... matFeatures, matLabels,... 'conf', 'config.conf'); %% calcClassDistributionPerSample bSucceess = CodebookRandomForestMex('calcClassDistributionPerSample',... hClassifier,... matFeatures,'verbose',true ); assert(bSucceess); %% generateHistogram matHistogram = CodebookRandomForestMex('generateHistogram',... hClassifier,... matFeatures, 'verbose',false); %% store bSuccess = CodebookRandomForestMex('storeToFile',... hClassifier,... 'codebookrf.stored.txt'); %% restore hRestoredClassifier = CodebookRandomForestMex('restoreFromFile',... 'codebookrf.stored.txt'); assert( ~(hRestoredClassifier == false) ); matHistogramNew = CodebookRandomForestMex('generateHistogram',... hRestoredClassifier,... matFeatures, 'verbose',false); d = matHistogramNew-matHistogram; assert( sum(d(:)) == 0 ); % histogram are alike %% CodebookRandomForestMex('delete', hClassifier); CodebookRandomForestMex('delete', hRestoredClassifier); %catch ecpn % disp( ecpn ); %end