123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- /**
- * @file DTBOblique.cpp
- * @brief random oblique decision tree
- * @author Sven Sickert
- * @date 10/15/2014
- */
- #include <iostream>
- #include <time.h>
- #include "DTBOblique.h"
- #include "vislearning/features/fpfeatures/ConvolutionFeature.h"
- #include "core/vector/Algorithms.h"
- using namespace OBJREC;
- #define DEBUGTREE
- using namespace std;
- using namespace NICE;
- DTBOblique::DTBOblique ( const Config *conf, string section )
- {
- random_split_tests = conf->gI(section, "random_split_tests", 10 );
- max_depth = conf->gI(section, "max_depth", 10 );
- minimum_information_gain = conf->gD(section, "minimum_information_gain", 10e-7 );
- minimum_entropy = conf->gD(section, "minimum_entropy", 10e-5 );
- use_shannon_entropy = conf->gB(section, "use_shannon_entropy", false );
- min_examples = conf->gI(section, "min_examples", 50);
- save_indices = conf->gB(section, "save_indices", false);
- lambdaInit = conf->gD(section, "lambdaInit", 0.5 );
- }
- DTBOblique::~DTBOblique()
- {
- }
- bool DTBOblique::entropyLeftRight (
- const FeatureValuesUnsorted & values,
- double threshold,
- double* stat_left,
- double* stat_right,
- double & entropy_left,
- double & entropy_right,
- double & count_left,
- double & count_right,
- int maxClassNo )
- {
- count_left = 0;
- count_right = 0;
- for ( FeatureValuesUnsorted::const_iterator i = values.begin(); i != values.end(); i++ )
- {
- int classno = i->second;
- double value = i->first;
- if ( value < threshold ) {
- stat_left[classno] += i->fourth;
- count_left+=i->fourth;
- }
- else
- {
- stat_right[classno] += i->fourth;
- count_right+=i->fourth;
- }
- }
- if ( (count_left == 0) || (count_right == 0) )
- return false;
- entropy_left = 0.0;
- for ( int j = 0 ; j <= maxClassNo ; j++ )
- if ( stat_left[j] != 0 )
- entropy_left -= stat_left[j] * log(stat_left[j]);
- entropy_left /= count_left;
- entropy_left += log(count_left);
- entropy_right = 0.0;
- for ( int j = 0 ; j <= maxClassNo ; j++ )
- if ( stat_right[j] != 0 )
- entropy_right -= stat_right[j] * log(stat_right[j]);
- entropy_right /= count_right;
- entropy_right += log (count_right);
- return true;
- }
- /** refresh data matrix X and label vector y */
- void DTBOblique::getDataAndLabel(
- const FeaturePool &fp,
- const Examples &examples,
- const std::vector<int> &examples_selection,
- NICE::Matrix & matX,
- NICE::Vector & vecY )
- {
- ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
- int amountParams = f->getParameterLength();
- int amountExamples = examples_selection.size();
- NICE::Matrix X(amountExamples, amountParams, 0.0 );
- NICE::Vector y(amountExamples, 0.0);
- int matIndex = 0;
- for ( vector<int>::const_iterator si = examples_selection.begin();
- si != examples_selection.end();
- si++ )
- {
- const pair<int, Example> & p = examples[*si];
- int classno = p.first;
- const Example & ce = p.second;
- NICE::Vector pixelRepr = f->getFeatureVector( &ce );
- pixelRepr /= pixelRepr.Max();
- // TODO for multiclass scenarios we need ONEvsALL!
- // {0,1} -> {-1,+1}
- double label = 2*classno-1;
- label *= ce.weight;
- pixelRepr *= ce.weight;
- y.set( matIndex, label );
- X.setRow(matIndex,pixelRepr);
- matIndex++;
- }
- matX = X;
- vecY = y;
- }
- /** recursive building method */
- DecisionNode *DTBOblique::buildRecursive(
- const FeaturePool & fp,
- const Examples & examples,
- std::vector<int> & examples_selection,
- FullVector & distribution,
- double e,
- int maxClassNo,
- int depth,
- double lambdaCurrent )
- {
- #ifdef DEBUGTREE
- std::cerr << "Examples: " << (int)examples_selection.size()
- << " (depth " << (int)depth << ")" << std::endl;
- #endif
- // initialize new node
- DecisionNode *node = new DecisionNode ();
- node->distribution = distribution;
- // stop criteria: max_depth, min_examples, min_entropy
- if ( depth > max_depth
- || (int)examples_selection.size() < min_examples
- || ( (e <= minimum_entropy) && (e != 0.0) ) ) // FIXME
- {
- #ifdef DEBUGTREE
- std::cerr << "DTBOblique: Stopping criteria applied!" << std::endl;
- #endif
- node->trainExamplesIndices = examples_selection;
- return node;
- }
- // refresh/set X and y
- NICE::Matrix X, G;
- NICE::Vector y, beta;
- getDataAndLabel( fp, examples, examples_selection, X, y );
- // least squares solution
- NICE::Matrix XTX = X.transpose()*X;
- XTX.addDiagonal ( NICE::Vector( XTX.rows(), lambdaCurrent) );
- choleskyDecomp(XTX, G);
- choleskyInvert(G, XTX);
- NICE::Matrix temp = XTX * X.transpose();
- beta.multiply(temp,y,false);
- // variables
- double best_threshold = 0.0;
- double best_ig = -1.0;
- FeatureValuesUnsorted values;
- double *best_distribution_left = new double [maxClassNo+1];
- double *best_distribution_right = new double [maxClassNo+1];
- double *distribution_left = new double [maxClassNo+1];
- double *distribution_right = new double [maxClassNo+1];
- double best_entropy_left = 0.0;
- double best_entropy_right = 0.0;
- // Setting Convolutional Feature
- ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
- f->setParameterVector( beta );
- // Feature Values
- values.clear();
- f->calcFeatureValues( examples, examples_selection, values);
- double minValue = (min_element ( values.begin(), values.end() ))->first;
- double maxValue = (max_element ( values.begin(), values.end() ))->first;
- if ( maxValue - minValue < 1e-7 )
- std::cerr << "DTBOblique: Difference between min and max of features values to small!" << std::endl;
- // get best thresholds by complete search
- for ( int i = 0; i < random_split_tests; i++ )
- {
- double threshold = (i * (maxValue - minValue ) / (double)random_split_tests)
- + minValue;
- // preparations
- double el, er;
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- distribution_left[k] = 0.0;
- distribution_right[k] = 0.0;
- }
- /** Test the current split */
- // Does another split make sense?
- double count_left;
- double count_right;
- if ( ! entropyLeftRight ( values, threshold,
- distribution_left, distribution_right,
- el, er, count_left, count_right, maxClassNo ) )
- continue;
- // information gain and entropy
- double pl = (count_left) / (count_left + count_right);
- double ig = e - pl*el - (1-pl)*er;
- if ( use_shannon_entropy )
- {
- double esplit = - ( pl*log(pl) + (1-pl)*log(1-pl) );
- ig = 2*ig / ( e + esplit );
- }
- if ( ig > best_ig )
- {
- best_ig = ig;
- best_threshold = threshold;
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- best_distribution_left[k] = distribution_left[k];
- best_distribution_right[k] = distribution_right[k];
- }
- best_entropy_left = el;
- best_entropy_right = er;
- }
- }
- //cleaning up
- delete [] distribution_left;
- delete [] distribution_right;
- // stop criteria: minimum information gain
- if ( best_ig < minimum_information_gain )
- {
- #ifdef DEBUGTREE
- std::cerr << "DTBOblique: Minimum information gain reached!" << std::endl;
- #endif
- delete [] best_distribution_left;
- delete [] best_distribution_right;
- node->trainExamplesIndices = examples_selection;
- return node;
- }
- /** Save the best split to current node */
- node->f = f->clone();
- node->threshold = best_threshold;
- /** Split examples according to split function */
- vector<int> examples_left;
- vector<int> examples_right;
- examples_left.reserve ( values.size() / 2 );
- examples_right.reserve ( values.size() / 2 );
- for ( FeatureValuesUnsorted::const_iterator i = values.begin();
- i != values.end(); i++ )
- {
- double value = i->first;
- if ( value < best_threshold )
- examples_left.push_back ( i->third );
- else
- examples_right.push_back ( i->third );
- }
- #ifdef DEBUGTREE
- node->f->store( std::cerr );
- std::cerr << std::endl;
- std::cerr << "mutual information / shannon entropy " << best_ig << " entropy "
- << e << " left entropy " << best_entropy_left << " right entropy "
- << best_entropy_right << std::endl;
- #endif
- FullVector distribution_left_sparse ( distribution.size() );
- FullVector distribution_right_sparse ( distribution.size() );
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- double l = best_distribution_left[k];
- double r = best_distribution_right[k];
- if ( l != 0 )
- distribution_left_sparse[k] = l;
- if ( r != 0 )
- distribution_right_sparse[k] = r;
- #ifdef DEBUGTREE
- if ( (l>0)||(r>0) )
- {
- std::cerr << "DTBOblique: split of class " << k << " ("
- << l << " <-> " << r << ") " << std::endl;
- }
- #endif
- }
- delete [] best_distribution_left;
- delete [] best_distribution_right;
- // update lambda by heuristic [Laptev/Buhmann, 2014]
- double lambdaLeft = lambdaCurrent *
- pow(((double)examples_selection.size()/(double)examples_left.size()),(2./f->getParameterLength()));
- double lambdaRight = lambdaCurrent *
- pow(((double)examples_selection.size()/(double)examples_right.size()),(2./f->getParameterLength()));
- #ifdef DEBUGTREE
- std::cerr << "regularization parameter lambda: left " << lambdaLeft
- << " right " << lambdaRight << std::endl;
- #endif
- /** Recursion */
- // left child
- node->left = buildRecursive ( fp, examples, examples_left,
- distribution_left_sparse, best_entropy_left,
- maxClassNo, depth+1, lambdaLeft );
- // right child
- node->right = buildRecursive ( fp, examples, examples_right,
- distribution_right_sparse, best_entropy_right,
- maxClassNo, depth+1, lambdaRight );
- return node;
- }
- /** initial building method */
- DecisionNode *DTBOblique::build ( const FeaturePool & fp,
- const Examples & examples,
- int maxClassNo )
- {
- int index = 0;
- FullVector distribution ( maxClassNo+1 );
- vector<int> all;
- all.reserve ( examples.size() );
- for ( Examples::const_iterator j = examples.begin();
- j != examples.end(); j++ )
- {
- int classno = j->first;
- distribution[classno] += j->second.weight;
- all.push_back ( index );
- index++;
- }
- double entropy = 0.0;
- double sum = 0.0;
- for ( int i = 0 ; i < distribution.size(); i++ )
- {
- double val = distribution[i];
- if ( val <= 0.0 ) continue;
- entropy -= val*log(val);
- sum += val;
- }
- entropy /= sum;
- entropy += log(sum);
- return buildRecursive ( fp, examples, all, distribution,
- entropy, maxClassNo, 0, lambdaInit );
- }
|