123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557 |
- /**
- * @file DTBOblique.cpp
- * @brief random oblique decision tree
- * @author Sven Sickert
- * @date 10/15/2014
- */
- #include <iostream>
- #include <time.h>
- #include "DTBOblique.h"
- #include "vislearning/features/fpfeatures/ConvolutionFeature.h"
- #include "core/vector/Algorithms.h"
- using namespace OBJREC;
- #define DEBUGTREE
- using namespace std;
- using namespace NICE;
- DTBOblique::DTBOblique ( const Config *conf, string section )
- {
- saveIndices = conf->gB( section, "save_indices", false);
- useShannonEntropy = conf->gB( section, "use_shannon_entropy", false );
- useOneVsOne = conf->gB( section, "use_one_vs_one", false );
- splitSteps = conf->gI( section, "split_steps", 20 );
- maxDepth = conf->gI( section, "max_depth", 10 );
- minExamples = conf->gI( section, "min_examples", 50);
- regularizationType = conf->gI( section, "regularization_type", 1 );
- minimumEntropy = conf->gD( section, "minimum_entropy", 10e-5 );
- minimumInformationGain = conf->gD( section, "minimum_information_gain", 10e-7 );
- lambdaInit = conf->gD( section, "lambda_init", 0.5 );
- }
- DTBOblique::~DTBOblique()
- {
- }
- bool DTBOblique::entropyLeftRight (
- const FeatureValuesUnsorted & values,
- double threshold,
- double* stat_left,
- double* stat_right,
- double & entropy_left,
- double & entropy_right,
- double & count_left,
- double & count_right,
- int maxClassNo )
- {
- count_left = 0;
- count_right = 0;
- for ( FeatureValuesUnsorted::const_iterator i = values.begin();
- i != values.end();
- i++ )
- {
- int classno = i->second;
- double value = i->first;
- if ( value < threshold ) {
- stat_left[classno] += i->fourth;
- count_left+=i->fourth;
- }
- else
- {
- stat_right[classno] += i->fourth;
- count_right+=i->fourth;
- }
- }
- if ( (count_left == 0) || (count_right == 0) )
- return false;
- entropy_left = 0.0;
- for ( int j = 0 ; j <= maxClassNo ; j++ )
- if ( stat_left[j] != 0 )
- entropy_left -= stat_left[j] * log(stat_left[j]);
- entropy_left /= count_left;
- entropy_left += log(count_left);
- entropy_right = 0.0;
- for ( int j = 0 ; j <= maxClassNo ; j++ )
- if ( stat_right[j] != 0 )
- entropy_right -= stat_right[j] * log(stat_right[j]);
- entropy_right /= count_right;
- entropy_right += log (count_right);
- return true;
- }
- bool DTBOblique::adaptDataAndLabelForMultiClass (
- const int posClass,
- const int negClass,
- NICE::Matrix & X,
- NICE::Vector & y )
- {
- bool posHasExamples = false;
- bool negHasExamples = false;
- // One-vs-one: Transforming into {-1,0,+1} problem
- if ( useOneVsOne )
- for ( int i = 0; i < y.size(); i++ )
- {
- if ( y[i] == posClass )
- {
- y[i] = 1.0;
- posHasExamples = true;
- }
- else if ( y[i] == negClass )
- {
- y[i] = -1.0;
- negHasExamples = true;
- }
- else
- {
- y[i] = 0.0;
- X.setRow( i, NICE::Vector( X.cols(), 0.0 ) );
- }
- }
- // One-vs-all: Transforming into {-1,+1} problem
- else
- for ( int i = 0; i < y.size(); i++ )
- {
- if ( y[i] == posClass )
- {
- y[i] = 1.0;
- posHasExamples = true;
- }
- else
- {
- y[i] = -1.0;
- negHasExamples = true;
- }
- }
- if ( posHasExamples && negHasExamples )
- return true;
- else
- return false;
- }
- /** refresh data matrix X and label vector y */
- void DTBOblique::getDataAndLabel(
- const FeaturePool &fp,
- const Examples &examples,
- const std::vector<int> &examples_selection,
- NICE::Matrix & X,
- NICE::Vector & y,
- NICE::Vector & w )
- {
- ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
- int amountParams = f->getParameterLength();
- int amountExamples = examples_selection.size();
- X = NICE::Matrix(amountExamples, amountParams, 0.0 );
- y = NICE::Vector(amountExamples, 0.0);
- w = NICE::Vector(amountExamples, 1.0);
- int matIndex = 0;
- for ( vector<int>::const_iterator si = examples_selection.begin();
- si != examples_selection.end();
- si++ )
- {
- const pair<int, Example> & p = examples[*si];
- const Example & ex = p.second;
- NICE::Vector pixelRepr = f->getFeatureVector( &ex );
- double label = p.first;
- pixelRepr *= ex.weight;
- w.set ( matIndex, ex.weight );
- y.set ( matIndex, label );
- X.setRow ( matIndex, pixelRepr );
- matIndex++;
- }
- }
- void DTBOblique::regularizeDataMatrix(
- const NICE::Matrix &X,
- NICE::Matrix &XTXreg,
- const int regOption,
- const double lambda )
- {
- XTXreg = X.transpose()*X;
- NICE::Matrix R;
- const int dim = X.cols();
- switch (regOption)
- {
- // identity matrix
- case 0:
- R.resize(dim,dim);
- R.setIdentity();
- R *= lambda;
- XTXreg += R;
- break;
- // differences operator, k=1
- case 1:
- R.resize(dim-1,dim);
- R.set( 0.0 );
- for ( int r = 0; r < dim-1; r++ )
- {
- R(r,r) = 1.0;
- R(r,r+1) = -1.0;
- }
- R = R.transpose()*R;
- R *= lambda;
- XTXreg += R;
- break;
- // difference operator, k=2
- case 2:
- R.resize(dim-2,dim);
- R.set( 0.0 );
- for ( int r = 0; r < dim-2; r++ )
- {
- R(r,r) = 1.0;
- R(r,r+1) = -2.0;
- R(r,r+2) = 1.0;
- }
- R = R.transpose()*R;
- R *= lambda;
- XTXreg += R;
- break;
- // as in [Chen et al., 2012]
- case 3:
- {
- NICE::Vector q ( dim, (1.0-lambda) );
- q[0] = 1.0;
- NICE::Matrix Q;
- Q.tensorProduct(q,q);
- //R.multiply(XTXreg,Q);
- // element-wise multiplication
- R.resize(dim,dim);
- for ( int r = 0; r < dim; r++ )
- {
- for ( int c = 0; c < dim; c++ )
- R(r,c) = XTXreg(r,c) * Q(r,c);
- R(r,r) = q[r] * XTXreg(r,r);
- }
- XTXreg = R;
- break;
- }
- // no regularization
- default:
- std::cerr << "DTBOblique::regularizeDataMatrix: No regularization applied!"
- << std::endl;
- break;
- }
- }
- void DTBOblique::findBestSplitThreshold (
- FeatureValuesUnsorted &values,
- SplitInfo &bestSplitInfo,
- const NICE::Vector &beta,
- const double &e,
- const int &maxClassNo )
- {
- double *distribution_left = new double [maxClassNo+1];
- double *distribution_right = new double [maxClassNo+1];
- double minValue = (min_element ( values.begin(), values.end() ))->first;
- double maxValue = (max_element ( values.begin(), values.end() ))->first;
- if ( maxValue - minValue < 1e-7 )
- std::cerr << "DTBOblique: Difference between min and max of features values to small!"
- << " [" << minValue << "," << maxValue << "]" << std::endl;
- // get best thresholds using complete search
- for ( int i = 0; i < splitSteps; i++ )
- {
- double threshold = (i * (maxValue - minValue ) / (double)splitSteps)
- + minValue;
- // preparations
- double el, er;
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- distribution_left[k] = 0.0;
- distribution_right[k] = 0.0;
- }
- /** Test the current split */
- // Does another split make sense?
- double count_left;
- double count_right;
- if ( ! entropyLeftRight ( values, threshold,
- distribution_left, distribution_right,
- el, er, count_left, count_right, maxClassNo ) )
- continue;
- // information gain and entropy
- double pl = (count_left) / (count_left + count_right);
- double ig = e - pl*el - (1-pl)*er;
- if ( useShannonEntropy )
- {
- double esplit = - ( pl*log(pl) + (1-pl)*log(1-pl) );
- ig = 2*ig / ( e + esplit );
- }
- if ( ig > bestSplitInfo.informationGain )
- {
- bestSplitInfo.informationGain = ig;
- bestSplitInfo.threshold = threshold;
- bestSplitInfo.params = beta;
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- bestSplitInfo.distLeft[k] = distribution_left[k];
- bestSplitInfo.distRight[k] = distribution_right[k];
- }
- bestSplitInfo.entropyLeft = el;
- bestSplitInfo.entropyRight = er;
- }
- }
- //cleaning up
- delete [] distribution_left;
- delete [] distribution_right;
- }
- /** recursive building method */
- DecisionNode *DTBOblique::buildRecursive(
- const FeaturePool & fp,
- const Examples & examples,
- std::vector<int> & examples_selection,
- FullVector & distribution,
- double e,
- int maxClassNo,
- int depth,
- double lambdaCurrent )
- {
- #ifdef DEBUGTREE
- std::cerr << "DTBOblique: Examples: " << (int)examples_selection.size()
- << ", Depth: " << (int)depth << ", Entropy: " << e << std::endl;
- #endif
- // initialize new node
- DecisionNode *node = new DecisionNode ();
- node->distribution = distribution;
- // stop criteria: maxDepth, minExamples, min_entropy
- if ( ( e <= minimumEntropy )
- || ( (int)examples_selection.size() < minExamples )
- || ( depth > maxDepth ) )
- {
- #ifdef DEBUGTREE
- std::cerr << "DTBOblique: Stopping criteria applied!" << std::endl;
- #endif
- node->trainExamplesIndices = examples_selection;
- return node;
- }
- // variables
- FeatureValuesUnsorted values;
- SplitInfo bestSplitInfo;
- bestSplitInfo.threshold = 0.0;
- bestSplitInfo.informationGain = -1.0;
- bestSplitInfo.distLeft = new double [maxClassNo+1];
- bestSplitInfo.distRight = new double [maxClassNo+1];
- bestSplitInfo.entropyLeft = 0.0;
- bestSplitInfo.entropyRight = 0.0;
- ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
- bestSplitInfo.params = f->getParameterVector();
- // Creating data matrix X and label vector y
- NICE::Matrix X;
- NICE::Vector y, beta, weights;
- getDataAndLabel( fp, examples, examples_selection, X, y, weights );
- // Transforming into multi-class problem
- for ( int posClass = 0; posClass <= maxClassNo; posClass++ )
- {
- bool gotInnerIteration = false;
- for ( int negClass = 0; negClass <= maxClassNo; negClass++ )
- {
- if ( posClass == negClass ) continue;
- NICE::Vector yCur = y;
- NICE::Matrix XCur = X;
- bool hasExamples = adaptDataAndLabelForMultiClass(
- posClass, negClass, XCur, yCur );
- yCur *= weights;
- // are there examples for positive and negative class?
- if ( !hasExamples ) continue;
- // one-vs-all setting: only one iteration for inner loop
- if ( !useOneVsOne && gotInnerIteration ) continue;
- // Preparing system of linear equations
- NICE::Matrix XTXr, G, temp;
- regularizeDataMatrix( XCur, XTXr, regularizationType, lambdaCurrent );
- choleskyDecomp(XTXr, G);
- choleskyInvert(G, XTXr);
- temp = XTXr * XCur.transpose();
- // Solve system of linear equations in a least squares manner
- beta.multiply(temp,yCur,false);
- // Updating parameter vector in convolutional feature
- f->setParameterVector( beta );
- // Feature Values
- values.clear();
- f->calcFeatureValues( examples, examples_selection, values);
- // complete search for threshold
- findBestSplitThreshold ( values, bestSplitInfo, beta, e, maxClassNo );
- gotInnerIteration = true;
- }
- }
- // supress strange behaviour for values near zero (8.88178e-16)
- if (bestSplitInfo.entropyLeft < 1.0e-10 ) bestSplitInfo.entropyLeft = 0.0;
- if (bestSplitInfo.entropyRight < 1.0e-10 ) bestSplitInfo.entropyRight = 0.0;
- // stop criteria: minimum information gain
- if ( bestSplitInfo.informationGain < minimumInformationGain )
- {
- #ifdef DEBUGTREE
- std::cerr << "DTBOblique: Minimum information gain reached!" << std::endl;
- #endif
- delete [] bestSplitInfo.distLeft;
- delete [] bestSplitInfo.distRight;
- node->trainExamplesIndices = examples_selection;
- return node;
- }
- /** Save the best split to current node */
- f->setParameterVector( bestSplitInfo.params );
- values.clear();
- f->calcFeatureValues( examples, examples_selection, values);
- node->f = f->clone();
- node->threshold = bestSplitInfo.threshold;
- /** Split examples according to best split function */
- vector<int> examples_left;
- vector<int> examples_right;
- examples_left.reserve ( values.size() / 2 );
- examples_right.reserve ( values.size() / 2 );
- for ( FeatureValuesUnsorted::const_iterator i = values.begin();
- i != values.end(); i++ )
- {
- if ( i->first < bestSplitInfo.threshold )
- examples_left.push_back ( i->third );
- else
- examples_right.push_back ( i->third );
- }
- #ifdef DEBUGTREE
- // node->f->store( std::cerr );
- // std::cerr << std::endl;
- std::cerr << "DTBOblique: Information Gain: " << bestSplitInfo.informationGain
- << ", Left Entropy: " << bestSplitInfo.entropyLeft << ", Right Entropy: "
- << bestSplitInfo.entropyRight << std::endl;
- #endif
- FullVector distribution_left_sparse ( distribution.size() );
- FullVector distribution_right_sparse ( distribution.size() );
- for ( int k = 0 ; k <= maxClassNo ; k++ )
- {
- double l = bestSplitInfo.distLeft[k];
- double r = bestSplitInfo.distRight[k];
- if ( l != 0 )
- distribution_left_sparse[k] = l;
- if ( r != 0 )
- distribution_right_sparse[k] = r;
- //#ifdef DEBUGTREE
- // std::cerr << "DTBOblique: Split of Class " << k << " ("
- // << l << " <-> " << r << ") " << std::endl;
- //#endif
- }
- delete [] bestSplitInfo.distLeft;
- delete [] bestSplitInfo.distRight;
- // update lambda by heuristic [Laptev/Buhmann, 2014]
- double lambdaLeft = lambdaCurrent *
- pow(((double)examples_selection.size()/(double)examples_left.size()),(2./f->getParameterLength()));
- double lambdaRight = lambdaCurrent *
- pow(((double)examples_selection.size()/(double)examples_right.size()),(2./f->getParameterLength()));
- //#ifdef DEBUGTREE
- // std::cerr << "regularization parameter lambda left " << lambdaLeft
- // << " right " << lambdaRight << std::endl;
- //#endif
- /** Recursion */
- // left child
- node->left = buildRecursive ( fp, examples, examples_left,
- distribution_left_sparse, bestSplitInfo.entropyLeft,
- maxClassNo, depth+1, lambdaLeft );
- // right child
- node->right = buildRecursive ( fp, examples, examples_right,
- distribution_right_sparse, bestSplitInfo.entropyRight,
- maxClassNo, depth+1, lambdaRight );
- return node;
- }
- /** initial building method */
- DecisionNode *DTBOblique::build ( const FeaturePool & fp,
- const Examples & examples,
- int maxClassNo )
- {
- int index = 0;
- FullVector distribution ( maxClassNo+1 );
- vector<int> all;
- all.reserve ( examples.size() );
- for ( Examples::const_iterator j = examples.begin();
- j != examples.end(); j++ )
- {
- int classno = j->first;
- distribution[classno] += j->second.weight;
- all.push_back ( index );
- index++;
- }
- double entropy = 0.0;
- double sum = 0.0;
- for ( int i = 0 ; i < distribution.size(); i++ )
- {
- double val = distribution[i];
- if ( val <= 0.0 ) continue;
- entropy -= val*log(val);
- sum += val;
- }
- entropy /= sum;
- entropy += log(sum);
- return buildRecursive ( fp, examples, all, distribution,
- entropy, maxClassNo, 0, lambdaInit );
- }
|