123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779 |
- /**
- * @file testImageNetBinaryBruteForce.cpp
- * @brief perform ImageNet tests with binary tasks for OCC using GP mean and variance, sophisticated approximations of both, Parzen Density Estimation and SVDD
- * @author Alexander Lütz
- * @date 23-05-2012 (dd-mm-yyyy)
- */
- #ifdef NICE_USELIB_MATIO
- #include <ctime>
- #include <time.h>
- #include "core/basics/Config.h"
- #include "core/basics/Timer.h"
- #include "core/algebra/CholeskyRobust.h"
- #include "core/algebra/DiagonalMatrixApprox.h"
- #include "core/vector/Algorithms.h"
- #include "core/vector/SparseVectorT.h"
- #include "vislearning/cbaselib/ClassificationResults.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "vislearning/classifier/kernelclassifier/KCMinimumEnclosingBall.h"
- #include "core/matlabAccess/MatFileIO.h"
- #include "vislearning/matlabAccessHighLevel/ImageNetData.h"
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- // --------------- THE KERNEL FUNCTION ( exponential kernel with euclidian distance ) ----------------------
- double measureDistance ( const NICE::SparseVector & a, const NICE::SparseVector & b, const double & sigma = 2.0)
- {
- double inner_sum(0.0);
- double d;
-
- //new version, where we needed on average 0.001707 s for each test sample
- NICE::SparseVector::const_iterator aIt = a.begin();
- NICE::SparseVector::const_iterator bIt = b.begin();
-
- //compute the euclidian distance between both feature vectores (given as SparseVectors)
- while ( (aIt != a.end()) && (bIt != b.end()) )
- {
- if (aIt->first == bIt->first)
- {
- d = ( aIt->second - bIt->second );
- inner_sum += d * d;
- aIt++;
- bIt++;
- }
- else if ( aIt->first < bIt->first)
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- else
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- }
-
- //compute remaining values, if b reached the end but not a
- while (aIt != a.end())
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- //compute remaining values, if a reached the end but not b
- while (bIt != b.end())
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- //normalization of the exponent
- inner_sum /= (2.0*sigma*sigma);
-
- //finally, compute the RBF-kernel score (RBF = radial basis function)
- return exp(-inner_sum);
- }
- // --------------- INPUT METHOD ----------------------
- void readParameters(string & filename, const int & size, NICE::Vector & parameterVector)
- {
- //we read the parameters which are given from a Matlab-Script (each line contains a single number, which is the optimal parameter for this class)
-
- parameterVector.resize(size);
- parameterVector.set(0.0);
-
- ifstream is(filename.c_str());
- if ( !is.good() )
- fthrow(IOException, "Unable to read parameters.");
- //
- string tmp;
- int cnt(0);
- while (! is.eof())
- {
- is >> tmp;
- parameterVector[cnt] = atof(tmp.c_str());
- cnt++;
- }
- //
- is.close();
- }
- //------------------- TRAINING METHODS --------------------
- void inline trainGPMean(NICE::Vector & GPMeanRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix choleskyMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( kernelMatrix, choleskyMatrix );
-
- GPMeanRightPart.resize(nrOfExamplesPerClass);
- GPMeanRightPart.set(0.0);
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
-
- // pre-compute K^{-1} \cdot y, which is the same for every new test sample
- choleskySolveLargeScale ( choleskyMatrix, y, GPMeanRightPart );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPVar(NICE::Matrix & choleskyMatrix, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- choleskyMatrix.resize(nrOfExamplesPerClass, nrOfExamplesPerClass);
- choleskyMatrix.set(0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot k_* for new test samples
- cr.robustChol ( kernelMatrix, choleskyMatrix );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPMeanApprox(NICE::Vector & GPMeanApproxRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Vector matrixDInv(nrOfExamplesPerClass,0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- matrixDInv.set(noise);
- else
- matrixDInv.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- matrixDInv[i] += kernelMatrix(i,j);
- if (i != j)
- matrixDInv[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse (and multiply every element with the label vector, which contains only one-entries and therefore be skipped...)
- GPMeanApproxRightPart.resize(nrOfExamplesPerClass);
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- GPMeanApproxRightPart[i] = 1.0 / matrixDInv[i];
- }
- }
-
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPMeanApprox training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPVarApprox(NICE::Vector & matrixDInv, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- std::cerr << "nrOfExamplesPerClass : " << nrOfExamplesPerClass << std::endl;
-
- Timer tTrainPreciseTimer;
- tTrainPreciseTimer.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- matrixDInv.resize(nrOfExamplesPerClass);
- matrixDInv.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- matrixDInv.set(noise);
- else
- matrixDInv.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- matrixDInv[i] += kernelMatrix(i,j);
- if (i != j)
- matrixDInv[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- matrixDInv[i] = 1.0 / matrixDInv[i];
- }
- }
-
- tTrainPreciseTimer.stop();
- std::cerr << "Precise time used for GPVarApprox training class " << classNumber << ": " << tTrainPreciseTimer.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP subset of regressors
- void inline trainGPSRMean(NICE::Vector & GPMeanRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Matrix Kmn (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Kmn(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kmm (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (uint j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kmm(i,j) = tmp;
- if (i != j)
- Kmm(j,i) = tmp;
- }
- }
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Matrix innerMatrix;
- innerMatrix.multiply(Kmn, Kmn, false /* tranpose first matrix*/, true /* transpose second matrix*/);
-
- innerMatrix.addScaledMatrix( noise, Kmm );
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
- NICE::Vector projectedLabels;
- projectedLabels.multiply(Kmn,y);
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix choleskyMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( innerMatrix, choleskyMatrix );
-
- GPMeanRightPart.resize(indicesOfChosenExamples.size());
- GPMeanRightPart.set(0.0);
-
- // pre-compute K^{-1} \cdot y, which is the same for every new test sample
- choleskySolveLargeScale ( choleskyMatrix, projectedLabels, GPMeanRightPart );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPSRMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP subset of regressors
- void inline trainGPSRVar(NICE::Matrix & choleskyMatrix, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Matrix Kmn (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Kmn(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kmm (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (uint j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kmm(i,j) = tmp;
- if (i != j)
- Kmm(j,i) = tmp;
- }
- }
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Matrix innerMatrix;
- innerMatrix.multiply(Kmn, Kmn, false /* tranpose first matrix*/, true /* transpose second matrix*/);
-
- innerMatrix.addScaledMatrix( noise, Kmm );
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- choleskyMatrix.resize( nrOfExamplesPerClass, nrOfExamplesPerClass );
- choleskyMatrix.set( 0.0 );
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( innerMatrix, choleskyMatrix );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPSRVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP FITC approx
- void inline trainGPFITCMean(NICE::Vector & GPMeanRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Vector diagK (nrOfExamplesPerClass, 0.0);
- //set every element
- for (int i = 0; i < nrOfExamplesPerClass; i++ )
- {
- diagK(i) = kernelMatrix(i,i);
- }
-
- NICE::Matrix Ku (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Ku(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kuu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (uint j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kuu(i,j) = tmp;
- if (i != j)
- Kuu(j,i) = tmp;
- }
- }
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- // NICE::Vector projectedLabels;
- // projectedLabels.multiply(Kmn,y);
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix Luu (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
- cr.robustChol ( Kuu, Luu );
-
- NICE::Matrix V (Ku);
- choleskySolveMatrixLargeScale( Luu, V);
-
- NICE::Vector dg (diagK);
- NICE::Vector sumV (diagK.size(),0.0);
- for (uint i=0; i<V.cols(); i++)
- {
- for (uint j=0; j<V.rows(); j++)
- {
- sumV(i) += V(j,i)*V(j,i);
- }
- sumV(i) += noise;
- }
- dg += sumV;
-
- for (uint i=0; i<V.cols(); i++)
- {
- for (uint j=0; j<V.rows(); j++)
- {
- V(j,i) /= sqrt(dg(i));
- }
- }
-
- NICE::Matrix Lu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- NICE::Matrix tmpVV (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- tmpVV.multiply(V,V,false,true);
- tmpVV.addIdentity(1.0);
- cr.robustChol ( tmpVV, Lu );
-
- NICE::Vector r (dg);
- for (uint i=0; i<r.size(); i++)
- {
- r(i) = 1.0/sqrt(r(i));
- }
-
- NICE::Vector be (indicesOfChosenExamples.size(), 0.0);
- choleskySolveLargeScale (Lu, V*r, be);
- choleskySolveLargeScale (Lu.transpose(), be, be);
-
- GPMeanRightPart.resize(indicesOfChosenExamples.size());
- GPMeanRightPart.set(0.0);
-
- choleskySolveLargeScale ( Luu.transpose(), be, GPMeanRightPart );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPFITCMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP FITC approx
- void inline trainGPFITCVar(NICE::Matrix & choleskyMatrix, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Vector diagK (nrOfExamplesPerClass, 0.0);
- //set every element
- for (int i = 0; i < nrOfExamplesPerClass; i++ )
- {
- diagK(i) = kernelMatrix(i,i);
- }
-
- NICE::Matrix Ku (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Ku(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kuu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (uint i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (uint j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kuu(i,j) = tmp;
- if (i != j)
- Kuu(j,i) = tmp;
- }
- }
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- // NICE::Vector projectedLabels;
- // projectedLabels.multiply(Kmn,y);
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix Luu (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
- cr.robustChol ( Kuu, Luu );
-
- NICE::Matrix V (Ku);
- choleskySolveMatrixLargeScale( Luu, V);
-
- NICE::Vector dg (diagK);
- NICE::Vector sumV (diagK.size(),0.0);
- for (uint i=0; i<V.cols(); i++)
- {
- for (uint j=0; j<V.rows(); j++)
- {
- sumV(i) += V(j,i)*V(j,i);
- }
- sumV(i) += noise;
- }
- dg += sumV;
-
- for (uint i=0; i<V.cols(); i++)
- {
- for (uint j=0; j<V.rows(); j++)
- {
- V(j,i) /= sqrt(dg(i));
- }
- }
-
- NICE::Matrix Lu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- NICE::Matrix tmpVV (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- tmpVV.multiply(V,V,false,true);
- tmpVV.addIdentity(1.0);
- cr.robustChol ( tmpVV, Lu );
-
- NICE::Matrix iKuu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- iKuu.addIdentity(1.0);
- choleskySolveMatrixLargeScale ( Luu.transpose(), iKuu );
- choleskySolveMatrixLargeScale ( Luu, iKuu );
-
- NICE::Matrix LuLuu (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- LuLuu.multiply(Lu,Luu);
- choleskyMatrix.setIdentity();
- choleskySolveMatrixLargeScale ( LuLuu.transpose(), choleskyMatrix);
- choleskySolveMatrixLargeScale ( LuLuu, choleskyMatrix);
-
- choleskyMatrix -= iKuu;
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPFITCVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPOptMean(NICE::Vector & rightPartGPOptMean, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- DiagonalMatrixApprox diagApprox ( true /*verbose*/ );
- // rightPartGPOptMean.resize(nrOfExamplesPerClass);
-
- NICE::Matrix kInv( nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0 );
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- cr.robustCholInv ( kernelMatrix, kInv );
-
- //we initialize the D-Matrix with the approximation we use in other methods (row sums of kernel matrix)
- rightPartGPOptMean.resize(nrOfExamplesPerClass);
- rightPartGPOptMean.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- rightPartGPOptMean.set(noise);
- else
- rightPartGPOptMean.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- rightPartGPOptMean[i] += kernelMatrix(i,j);
- if (i != j)
- rightPartGPOptMean[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- rightPartGPOptMean[i] = 1.0 / rightPartGPOptMean[i];
- }
-
- // rightPartGPOptMean.set(0.0);
-
- //compute optimal diagonal matrix
- diagApprox.approx ( kernelMatrix, rightPartGPOptMean );
-
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPOptMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPOptVar(NICE::Vector & DiagGPOptVar, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- DiagonalMatrixApprox diagApprox ( true /*verbose*/ );
- DiagGPOptVar.resize(nrOfExamplesPerClass);
-
- NICE::Matrix kInv( nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0 );
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- cr.robustCholInv ( kernelMatrix, kInv );
-
- // DiagGPOptVar.set(0.0);
-
- //we initialize the D-Matrix with the approximation we use in other methods (row sums of kernel matrix)
- DiagGPOptVar.resize(nrOfExamplesPerClass);
- DiagGPOptVar.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- DiagGPOptVar.set(noise);
- else
- DiagGPOptVar.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- DiagGPOptVar[i] += kernelMatrix(i,j);
- if (i != j)
- DiagGPOptVar[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- DiagGPOptVar[i] = 1.0 / DiagGPOptVar[i];
- }
-
- //compute optimal diagonal matrix
- diagApprox.approx ( kernelMatrix, DiagGPOptVar );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPOptVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- KCMinimumEnclosingBall *trainSVDD( const double & noise, const NICE::Matrix kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
-
- Config conf;
- // set the outlier ratio (Paul optimized this paramter FIXME)
- conf.sD( "SVDD", "outlier_fraction", 0.1 );
- conf.sB( "SVDD", "verbose", false );
- KCMinimumEnclosingBall *svdd = new KCMinimumEnclosingBall ( &conf, NULL /* no kernel function */, "SVDD" /* config section */);
- KernelData kernelData ( &conf, kernelMatrix, "Kernel" , false /* update cholesky */ );
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
- // KCMinimumEnclosingBall does not store the kernel data object, therefore, we are save with passing a local copy
- svdd->teach ( &kernelData, y );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for SVDD training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- return svdd;
- }
- // ------------- EVALUATION METHODS ---------------------
- void inline evaluateGPVarApprox(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Vector & matrixDInv, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_* where D is our nice approximation of K
-
- NICE::Vector rightPart (kernelVector.size());
- for (uint j = 0; j < kernelVector.size(); j++)
- {
- rightPart[j] = kernelVector[j] * matrixDInv[j];
- }
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPVar(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Matrix & choleskyMatrix, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_*
-
- NICE::Vector rightPart (kernelVector.size(),0.0);
- choleskySolveLargeScale ( choleskyMatrix, kernelVector, rightPart );
-
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPMeanApprox(const NICE::Vector & kernelVector, const NICE::Vector & rightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot D^{-1} \cdot y where D is our nice approximation of K
- mean = kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPMean(const NICE::Vector & kernelVector, const NICE::Vector & GPMeanRightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot K^{-1} \cdot y
- mean = kernelVector.scalarProduct ( GPMeanRightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPSRMean(const NICE::Vector & kernelVector, const NICE::Vector & GPSRMeanRightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, const std::vector<int> & indicesOfChosenExamples)
- {
- double mean;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot K^{-1} \cdot y
- mean = kernelVectorM.scalarProduct ( GPSRMeanRightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPSRVar(const NICE::Vector & kernelVector, const NICE::Matrix & choleskyMatrix, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples, const double & noise)
- {
- double uncertainty;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- NICE::Vector rightPart (nrOfRegressors,0.0);
-
- choleskySolveLargeScale ( choleskyMatrix, kernelVectorM, rightPart );
-
- uncertainty = noise*kernelVectorM.scalarProduct ( rightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPFITCMean(const NICE::Vector & kernelVector, const NICE::Vector & GPFITCMeanRightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, const std::vector<int> & indicesOfChosenExamples)
- {
- double mean;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot K^{-1} \cdot y
- mean = kernelVectorM.scalarProduct ( GPFITCMeanRightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPFITCVar(const NICE::Vector & kernelVector, const NICE::Matrix & choleskyMatrix, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples, const double & noise)
- {
- double uncertainty;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- NICE::Vector tmp (nrOfRegressors,0.0);
- tmp = choleskyMatrix*kernelVectorM;
- tmp *= kernelVectorM;
-
- uncertainty = 1.0 + tmp.Sum();
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- //this method is completely the same as evaluateGPMeanApprox, but for convenience, it is its own method
- void inline evaluateGPOptMean(const NICE::Vector & kernelVector, const NICE::Vector & rightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot D^{-1} \cdot y where D is our nice approximation of K
- mean = kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- //this method is completely the same as evaluateGPVarApprox, but for convenience, it is its own method
- void inline evaluateGPOptVar(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Vector & matrixDInv, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_* where D is our nice approximation of K
-
- NICE::Vector rightPart (kernelVector.size());
- for (uint j = 0; j < kernelVector.size(); j++)
- {
- rightPart[j] = kernelVector[j] * matrixDInv[j];
- }
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateParzen(const NICE::Vector & kernelVector, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double score;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- //the Parzen score is nothing but the averaged similarity to every training sample
- score = kernelVector.Sum() / (double) kernelVector.size(); //maybe we could directly call kernelVector.Mean() here
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = score;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateSVDD( KCMinimumEnclosingBall *svdd, const NICE::Vector & kernelVector, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // In the following, we assume that we are using a Gaussian kernel
- r = svdd->classifyKernel ( kernelVector, 1.0 /* kernel self */ );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
- }
- /**
- test the basic functionality of fast-hik hyperparameter optimization
- */
- int main (int argc, char **argv)
- {
- std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
- Config conf ( argc, argv );
- string resultsfile = conf.gS("main", "results", "results.txt" );
- int nrOfExamplesPerClass = conf.gI("main", "nrOfExamplesPerClass", 50);
- nrOfExamplesPerClass = std::min(nrOfExamplesPerClass, 100); // we do not have more than 100 examples per class
-
- //which classes to considere? we assume consecutive class numers
- int indexOfFirstClass = conf.gI("main", "indexOfFirstClass", 0);
- indexOfFirstClass = std::max(indexOfFirstClass, 0); //we do not have less than 0 classes
- int indexOfLastClass = conf.gI("main", "indexOfLastClass", 999);
- indexOfLastClass = std::min(indexOfLastClass, 999); //we do not have more than 1000 classes
-
- int nrOfClassesToConcidere = (indexOfLastClass - indexOfLastClass)+1;
-
- //repetitions for every class to achieve reliable time evalutions
- int runsPerClassToAverageTraining = conf.gI( "main", "runsPerClassToAverageTraining", 1 );
- int runsPerClassToAverageTesting = conf.gI( "main", "runsPerClassToAverageTesting", 1 );
-
- // share parameters among methods and classes?
- bool shareParameters = conf.gB("main" , "shareParameters", true);
-
- //which methods do we want to use?
- bool GPMeanApprox = conf.gB( "main", "GPMeanApprox", false);
- bool GPVarApprox = conf.gB( "main", "GPVarApprox", false);
- bool GPMean = conf.gB( "main", "GPMean", false);
- bool GPVar = conf.gB( "main", "GPVar", false);
- bool GPSRMean = conf.gB( "main", "GPSRMean", false);
- bool GPSRVar = conf.gB( "main", "GPSRVar", false);
- bool GPFITCMean = conf.gB( "main", "GPFITCMean", false);
- bool GPFITCVar = conf.gB( "main", "GPFITCVar", false);
- bool GPOptMean = conf.gB( "main", "GPOptMean", false);
- bool GPOptVar = conf.gB( "main", "GPOptVar", false);
- bool Parzen = conf.gB( "main", "Parzen", false);
- bool SVDD = conf.gB( "main", "SVDD", false);
-
- if (GPMeanApprox)
- std::cerr << "GPMeanApprox used" << std::endl;
- else
- std::cerr << "GPMeanApprox not used" << std::endl;
- if (GPVarApprox)
- std::cerr << "GPVarApprox used" << std::endl;
- else
- std::cerr << "GPVarApprox not used" << std::endl;
- if (GPMean)
- std::cerr << "GPMean used" << std::endl;
- else
- std::cerr << "GPMean not used" << std::endl;
- if (GPVar)
- std::cerr << "GPVar used" << std::endl;
- else
- std::cerr << "GPVar not used" << std::endl;
- if (GPSRMean)
- std::cerr << "GPSRMean used" << std::endl;
- else
- std::cerr << "GPSRMean not used" << std::endl;
- if (GPSRVar)
- std::cerr << "GPSRVar used" << std::endl;
- else
- std::cerr << "GPSRVar not used" << std::endl;
- if (GPFITCMean)
- std::cerr << "GPFITCMean used" << std::endl;
- else
- std::cerr << "GPFITCMean not used" << std::endl;
- if (GPFITCVar)
- std::cerr << "GPFITCVar used" << std::endl;
- else
- std::cerr << "GPFITCVar not used" << std::endl;
- if (GPOptMean)
- std::cerr << "GPOptMean used" << std::endl;
- else
- std::cerr << "GPOptMean not used" << std::endl;
- if (GPOptVar)
- std::cerr << "GPOptVar used" << std::endl;
- else
- std::cerr << "GPOptVar not used" << std::endl;
- if (Parzen)
- std::cerr << "Parzen used" << std::endl;
- else
- std::cerr << "Parzen not used" << std::endl;
- if (SVDD)
- std::cerr << "SVDD used" << std::endl;
- else
- std::cerr << "SVDD not used" << std::endl;
-
- // GP variance approximation
- NICE::Vector sigmaGPVarApproxParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPVarApproxParas(nrOfClassesToConcidere,0.0);
- // GP variance
- NICE::Vector sigmaGPVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPVarParas(nrOfClassesToConcidere,0.0);
- //GP mean approximation
- NICE::Vector sigmaGPMeanApproxParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPMeanApproxParas(nrOfClassesToConcidere,0.0);
- //GP mean
- NICE::Vector sigmaGPMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPMeanParas(nrOfClassesToConcidere,0.0);
- //GP SR mean
- NICE::Vector sigmaGPSRMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPSRMeanParas(nrOfClassesToConcidere,0.0);
- //GP SR var
- NICE::Vector sigmaGPSRVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPSRVarParas(nrOfClassesToConcidere,0.0);
- //GP FITC mean
- NICE::Vector sigmaGPFITCMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPFITCMeanParas(nrOfClassesToConcidere,0.0);
- //GP FITC var
- NICE::Vector sigmaGPFITCVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPFITCVarParas(nrOfClassesToConcidere,0.0);
- //GP Opt mean
- NICE::Vector sigmaGPOptMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPOptMeanParas(nrOfClassesToConcidere,0.0);
- //GP Opt var
- NICE::Vector sigmaGPOptVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPOptVarParas(nrOfClassesToConcidere,0.0);
- //Parzen
- NICE::Vector sigmaParzenParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseParzenParas(nrOfClassesToConcidere,0.0);
- //SVDD
- NICE::Vector sigmaSVDDParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseSVDDParas(nrOfClassesToConcidere,0.0);
-
- if (!shareParameters)
- {
- //read the optimal parameters for the different methods
-
- // GP variance approximation
- string sigmaGPVarApproxFile = conf.gS("main", "sigmaGPVarApproxFile", "approxVarSigma.txt");
- string noiseGPVarApproxFile = conf.gS("main", "noiseGPVarApproxFile", "approxVarNoise.txt");
- // GP variance
- string sigmaGPVarFile = conf.gS("main", "sigmaGPVarFile", "approxVarSigma.txt");
- string noiseGPVarFile = conf.gS("main", "noiseGPVarFile", "approxVarNoise.txt");
- //GP mean approximation
- string sigmaGPMeanApproxFile = conf.gS("main", "sigmaGPMeanApproxFile", "approxVarSigma.txt");
- string noiseGPMeanApproxFile = conf.gS("main", "noiseGPMeanApproxFile", "approxVarNoise.txt");
- //GP mean
- string sigmaGPMeanFile = conf.gS("main", "sigmaGPMeanFile", "approxVarSigma.txt");
- string noiseGPMeanFile = conf.gS("main", "noiseGPMeanFile", "approxVarNoise.txt");
- //Parzen
- string sigmaParzenFile = conf.gS("main", "sigmaParzenFile", "approxVarSigma.txt");
- string noiseParzenFile = conf.gS("main", "noiseParzenFile", "approxVarNoise.txt");
- //SVDD
- string sigmaSVDDFile = conf.gS("main", "sigmaSVDDFile", "approxVarSigma.txt");
- string noiseSVDDFile = conf.gS("main", "noiseSVDDFile", "approxVarNoise.txt");
- // GP variance approximation
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPVarApproxParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPVarApproxParas);
- // GP variance
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPVarParas);
- //GP mean approximation
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPMeanApproxParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPMeanApproxParas);
- //GP mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPMeanParas);
- //GP SR mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPSRMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPSRMeanParas);
- //GP SR var
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPSRVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPSRVarParas);
- //GP FITC mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPFITCMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPFITCMeanParas);
- //GP FITC var
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPFITCVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPFITCVarParas);
- //GP Opt mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPOptMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPOptMeanParas);
- //GP Opt var
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPOptVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPOptVarParas);
- //Parzen
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaParzenParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseParzenParas);
- //SVDD
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaSVDDParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseSVDDParas);
- }
- else
- {
- //use static variables for all methods and classis
- double noise = conf.gD( "main", "noise", 0.01 );
- double sigma = conf.gD( "main", "sigma", 1.0 );
-
- sigmaGPVarApproxParas.set(sigma);
- noiseGPVarApproxParas.set(noise);
- // GP variance
- sigmaGPVarParas.set(sigma);
- noiseGPVarParas.set(noise);
- //GP mean approximation
- sigmaGPMeanApproxParas.set(sigma);
- noiseGPMeanApproxParas.set(noise);
- //GP mean
- sigmaGPMeanParas.set(sigma);
- noiseGPMeanParas.set(noise);
- //GP SR mean
- sigmaGPSRMeanParas.set(sigma);
- noiseGPSRMeanParas.set(noise);
- //GP SR var
- sigmaGPSRVarParas.set(sigma);
- noiseGPSRVarParas.set(noise);
- //GP FITC mean
- sigmaGPFITCMeanParas.set(sigma);
- noiseGPFITCMeanParas.set(noise);
- //GP FITC var
- sigmaGPFITCVarParas.set(sigma);
- noiseGPFITCVarParas.set(noise);
- //GP Opt mean
- sigmaGPOptMeanParas.set(sigma);
- noiseGPOptMeanParas.set(noise);
- //GP Opt var
- sigmaGPOptVarParas.set(sigma);
- noiseGPOptVarParas.set(noise);
- //Parzen
- sigmaParzenParas.set(sigma);
- noiseParzenParas.set(noise);
- //SVDD
- sigmaSVDDParas.set(sigma);
- noiseSVDDParas.set(noise);
- }
-
-
- // -------- optimal parameters read --------------
-
- std::vector<SparseVector> trainingData;
- NICE::Vector y;
-
- std::cerr << "Reading ImageNet data ..." << std::endl;
- bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
- string imageNetPath;
- if (imageNetLocal)
- imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
- else
- imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
- ImageNetData imageNetTrain ( imageNetPath + "demo/" );
- imageNetTrain.preloadData( "train", "training" );
- trainingData = imageNetTrain.getPreloadedData();
- y = imageNetTrain.getPreloadedLabels();
-
- std::cerr << "Reading of training data finished" << std::endl;
- std::cerr << "trainingData.size(): " << trainingData.size() << std::endl;
- std::cerr << "y.size(): " << y.size() << std::endl;
-
- std::cerr << "Reading ImageNet test data files (takes some seconds)..." << std::endl;
- ImageNetData imageNetTest ( imageNetPath + "demo/" );
- imageNetTest.preloadData ( "val", "testing" );
- imageNetTest.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
-
- double OverallPerformanceGPVarApprox(0.0);
- double OverallPerformanceGPVar(0.0);
- double OverallPerformanceGPMeanApprox(0.0);
- double OverallPerformanceGPMean(0.0);
- double OverallPerformanceGPSRMean(0.0);
- double OverallPerformanceGPSRVar(0.0);
- double OverallPerformanceGPFITCMean(0.0);
- double OverallPerformanceGPFITCVar(0.0);
- double OverallPerformanceGPOptMean(0.0);
- double OverallPerformanceGPOptVar(0.0);
- double OverallPerformanceParzen(0.0);
- double OverallPerformanceSVDD(0.0);
-
- double kernelSigmaGPVarApprox;
- double kernelSigmaGPVar;
- double kernelSigmaGPMeanApprox;
- double kernelSigmaGPMean;
- double kernelSigmaGPSRMean;
- double kernelSigmaGPSRVar;
- double kernelSigmaGPFITCMean;
- double kernelSigmaGPFITCVar;
- double kernelSigmaGPOptMean;
- double kernelSigmaGPOptVar;
- double kernelSigmaParzen;
- double kernelSigmaSVDD;
-
- for (int cl = indexOfFirstClass; cl <= indexOfLastClass; cl++)
- {
- std::cerr << "run for class " << cl << std::endl;
- int positiveClass = cl+1; //labels are from 1 to 1000, but our indices from 0 to 999
- // ------------------------------ TRAINING ------------------------------
-
- kernelSigmaGPVarApprox = sigmaGPVarApproxParas[cl];
- kernelSigmaGPVar = sigmaGPVarParas[cl];
- kernelSigmaGPMeanApprox = sigmaGPMeanApproxParas[cl];
- kernelSigmaGPMean = sigmaGPMeanParas[cl];
- kernelSigmaGPSRMean = sigmaGPSRMeanParas[cl];
- kernelSigmaGPSRVar = sigmaGPSRVarParas[cl];
- kernelSigmaGPFITCMean = sigmaGPFITCMeanParas[cl];
- kernelSigmaGPFITCVar = sigmaGPFITCVarParas[cl];
- kernelSigmaGPOptMean = sigmaGPOptMeanParas[cl];
- kernelSigmaGPOptVar = sigmaGPOptVarParas[cl];
- kernelSigmaParzen = sigmaParzenParas[cl];
- kernelSigmaSVDD = sigmaSVDDParas[cl];
-
- Timer tTrain;
- tTrain.start();
-
- //compute the kernel matrix, which will be shared among all methods in this scenario
- NICE::Matrix kernelMatrix(nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //NOTE in theory we have to compute a single kernel Matrix for every method, since every method may have its own optimal parameter
- // I'm sure, we can speed it up a bit and compute it only for every different parameter
- //nonetheless, it's not as nice as we originally thought (same matrix for every method)
-
- //NOTE Nonetheless, since we're only interested in runtimes, we can ignore this
-
- //now sum up all entries of each row in the original kernel matrix
- double kernelScore(0.0);
- for (int i = cl*100; i < cl*100+nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < cl*100+nrOfExamplesPerClass; j++)
- {
- kernelScore = measureDistance(trainingData[i],trainingData[j], kernelSigmaGPVarApprox);
- kernelMatrix(i-cl*100,j-cl*100) = kernelScore;
-
- if (i != j)
- kernelMatrix(j-cl*100,i-cl*100) = kernelScore;
- }
- }
-
- // now call the individual training methods
-
- //train GP Mean Approx
- NICE::Vector GPMeanApproxRightPart;
- if (GPMeanApprox)
- trainGPMeanApprox(GPMeanApproxRightPart, noiseGPMeanApproxParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Var Approx
- NICE::Vector matrixDInv;
- if (GPVarApprox)
- trainGPVarApprox(matrixDInv, noiseGPVarApproxParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Mean
- NICE::Vector GPMeanRightPart;
- if (GPMean)
- trainGPMean(GPMeanRightPart, noiseGPMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Var
- NICE::Matrix GPVarCholesky;
- if (GPVar)
- trainGPVar(GPVarCholesky, noiseGPVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- int nrOfRegressors (0);
- //train GP SR Mean
- NICE::Vector GPSRMeanRightPart;
- std::vector<int> indicesOfChosenExamplesGPSRMean;
- nrOfRegressors = conf.gI( "GPSR", "nrOfRegressors", nrOfExamplesPerClass/2);
- nrOfRegressors = std::min( nrOfRegressors, nrOfExamplesPerClass );
- if (GPSRMean)
- trainGPSRMean(GPSRMeanRightPart, noiseGPSRMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPSRMean );
-
- //train GP SR Var
- NICE::Matrix GPSRVarCholesky;
- std::vector<int> indicesOfChosenExamplesGPSRVar;
- if (GPSRVar)
- trainGPSRVar(GPSRVarCholesky, noiseGPSRVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPSRVar );
-
- //train GP FITC Mean
- NICE::Vector GPFITCMeanRightPart;
- std::vector<int> indicesOfChosenExamplesGPFITCMean;
- nrOfRegressors = conf.gI( "GPFITC", "nrOfRegressors", nrOfExamplesPerClass/5);
- nrOfRegressors = std::min( nrOfRegressors, nrOfExamplesPerClass );
- if (GPFITCMean)
- trainGPFITCMean(GPFITCMeanRightPart, noiseGPFITCMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPFITCMean );
- //train GP FITC Var
- NICE::Matrix GPFITCVarCholesky;
- std::vector<int> indicesOfChosenExamplesGPFITCVar;
- if (GPFITCVar)
- trainGPFITCVar(GPFITCVarCholesky, noiseGPFITCVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPFITCVar );
-
- //train GP Opt Mean
- NICE::Vector GPOptMeanRightPart;
- if (GPOptMean)
- trainGPOptMean(GPOptMeanRightPart, noiseGPOptMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
- std::cerr << "GPOptMeanRightPart: " << std::endl; std::cerr << GPOptMeanRightPart << std::endl;
-
- //train GP Opt Var
- NICE::Vector DiagGPOptVar;
- if (GPOptVar)
- trainGPOptVar(DiagGPOptVar, noiseGPOptVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
- std::cerr << "DiagGPOptVar: " << std::endl; std::cerr << DiagGPOptVar << std::endl;
-
- //train Parzen
- //nothing to do :)
-
- //train SVDD
- KCMinimumEnclosingBall *svdd;
- if (SVDD)
- svdd = trainSVDD(noiseSVDDParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- tTrain.stop();
- std::cerr << "Time used for training class " << cl << ": " << tTrain.getLast() << std::endl;
-
- std::cerr << "training done - now perform the evaluation" << std::endl;
- // ------------------------------ TESTING ------------------------------
-
- std::cerr << "Classification step ... with " << imageNetTest.getNumPreloadedExamples() << " examples" << std::endl;
-
- ClassificationResults resultsGPVarApprox;
- ClassificationResults resultsGPVar;
- ClassificationResults resultsGPMeanApprox;
- ClassificationResults resultsGPMean;
- ClassificationResults resultsGPSRMean;
- ClassificationResults resultsGPSRVar;
- ClassificationResults resultsGPFITCMean;
- ClassificationResults resultsGPFITCVar;
- ClassificationResults resultsGPOptMean;
- ClassificationResults resultsGPOptVar;
- ClassificationResults resultsParzen;
- ClassificationResults resultsSVDD;
-
- ProgressBar pb;
- Timer tTest;
- tTest.start();
- Timer tTestSingle;
-
- double timeForSingleExamplesGPVarApprox(0.0);
- double timeForSingleExamplesGPVar(0.0);
- double timeForSingleExamplesGPMeanApprox(0.0);
- double timeForSingleExamplesGPMean(0.0);
- double timeForSingleExamplesGPSRMean(0.0);
- double timeForSingleExamplesGPSRVar(0.0);
- double timeForSingleExamplesGPFITCMean(0.0);
- double timeForSingleExamplesGPFITCVar(0.0);
- double timeForSingleExamplesGPOptMean(0.0);
- double timeForSingleExamplesGPOptVar(0.0);
- double timeForSingleExamplesParzen(0.0);
- double timeForSingleExamplesSVDD(0.0);
-
- for ( uint i = 0 ; i < (uint)imageNetTest.getNumPreloadedExamples(); i++ )
- {
- pb.update ( imageNetTest.getNumPreloadedExamples() );
- const SparseVector & svec = imageNetTest.getPreloadedExample ( i );
- //NOTE: again we should use method-specific optimal parameters. If we're only interested in the runtimes, this doesn't matter
-
- //compute (self) similarities
- double kernelSelf (measureDistance(svec,svec, kernelSigmaGPVarApprox) );
- NICE::Vector kernelVector (nrOfExamplesPerClass, 0.0);
-
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- kernelVector[j] = measureDistance(trainingData[j+cl*100],svec, kernelSigmaGPVarApprox);
- }
-
- //call the individual test-methods
-
- //evaluate GP Var Approx
- ClassificationResult rGPVarApprox;
- if (GPVarApprox)
- evaluateGPVarApprox( kernelVector, kernelSelf, matrixDInv, rGPVarApprox, timeForSingleExamplesGPVarApprox, runsPerClassToAverageTesting );
-
- //evaluate GP Var
- ClassificationResult rGPVar;
- if (GPVar)
- evaluateGPVar( kernelVector, kernelSelf, GPVarCholesky, rGPVar, timeForSingleExamplesGPVar, runsPerClassToAverageTesting );
-
- //evaluate GP Mean Approx
- ClassificationResult rGPMeanApprox;
- if (GPMeanApprox)
- evaluateGPMeanApprox( kernelVector, matrixDInv, rGPMeanApprox, timeForSingleExamplesGPMeanApprox, runsPerClassToAverageTesting );
-
- //evaluate GP Mean
- ClassificationResult rGPMean;
- if (GPMean)
- evaluateGPMean( kernelVector, GPMeanRightPart, rGPMean, timeForSingleExamplesGPMean, runsPerClassToAverageTesting );
-
- //evaluate GP SR Mean
- ClassificationResult rGPSRMean;
- if (GPSRMean)
- evaluateGPSRMean( kernelVector, GPSRMeanRightPart, rGPSRMean, timeForSingleExamplesGPSRMean, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPSRMean );
-
- //evaluate GP SR Var
- ClassificationResult rGPSRVar;
- if (GPSRVar)
- evaluateGPSRVar( kernelVector, GPSRVarCholesky, rGPSRVar, timeForSingleExamplesGPSRVar, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPSRVar, noiseGPSRVarParas[cl] );
-
- //evaluate GP FITC Mean
- ClassificationResult rGPFITCMean;
- if (GPFITCMean)
- evaluateGPFITCMean( kernelVector, GPFITCMeanRightPart, rGPFITCMean, timeForSingleExamplesGPFITCMean, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPFITCMean );
-
- //evaluate GP FITC Var
- ClassificationResult rGPFITCVar;
- if (GPFITCVar)
- evaluateGPFITCVar( kernelVector, GPFITCVarCholesky, rGPFITCVar, timeForSingleExamplesGPFITCVar, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPFITCVar, noiseGPFITCVarParas[cl] );
-
- //evaluate GP Opt Mean
- ClassificationResult rGPOptMean;
- if (GPOptMean)
- evaluateGPOptMean( kernelVector, GPOptMeanRightPart, rGPOptMean, timeForSingleExamplesGPOptMean, runsPerClassToAverageTesting );
-
- //evaluate GP Opt Var
- ClassificationResult rGPOptVar;
- if (GPOptVar)
- evaluateGPOptVar( kernelVector, kernelSelf, DiagGPOptVar, rGPOptVar, timeForSingleExamplesGPOptVar, runsPerClassToAverageTesting );
-
- //evaluate Parzen
- ClassificationResult rParzen;
- if (Parzen)
- evaluateParzen( kernelVector, rParzen, timeForSingleExamplesParzen, runsPerClassToAverageTesting );
-
- //evaluate SVDD
- ClassificationResult rSVDD;
- if (SVDD)
- evaluateSVDD( svdd, kernelVector, rSVDD, timeForSingleExamplesSVDD, runsPerClassToAverageTesting );
-
- // set ground truth label
- rGPVarApprox.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPMeanApprox.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPSRMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPSRVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPFITCMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPFITCVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPOptMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPOptVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rParzen.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rSVDD.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- //remember the results for the evaluation lateron
- resultsGPVarApprox.push_back ( rGPVarApprox );
- resultsGPVar.push_back ( rGPVar );
- resultsGPMeanApprox.push_back ( rGPMeanApprox );
- resultsGPMean.push_back ( rGPMean );
- resultsGPSRMean.push_back ( rGPSRMean );
- resultsGPSRVar.push_back ( rGPSRVar );
- resultsGPFITCMean.push_back ( rGPFITCMean );
- resultsGPFITCVar.push_back ( rGPFITCVar );
- resultsGPOptMean.push_back ( rGPOptMean );
- resultsGPOptVar.push_back ( rGPOptVar );
- resultsParzen.push_back ( rParzen );
- resultsSVDD.push_back ( rSVDD );
- }
-
- tTest.stop();
- std::cerr << "Time used for evaluating class " << cl << ": " << tTest.getLast() << std::endl;
-
- timeForSingleExamplesGPVarApprox/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPMeanApprox/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPSRMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPSRVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPFITCMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPFITCVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPOptMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPOptVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesParzen/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesSVDD/= imageNetTest.getNumPreloadedExamples();
-
- std::cerr << "GPVarApprox -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPVarApprox << std::endl;
- std::cerr << "GPVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPVar << std::endl;
- std::cerr << "GPMeanApprox -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPMeanApprox << std::endl;
- std::cerr << "GPMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPMean << std::endl;
- std::cerr << "GPSRMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPSRMean << std::endl;
- std::cerr << "GPSRVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPSRVar << std::endl;
- std::cerr << "GPFITCMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPFITCMean << std::endl;
- std::cerr << "GPFITCVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPFITCVar << std::endl;
- std::cerr << "GPOptMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPOptMean << std::endl;
- std::cerr << "GPOptVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPOptVar << std::endl;
- std::cerr << "Parzen -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesParzen << std::endl;
- std::cerr << "SVDD -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesSVDD << std::endl;
- // run the AUC-evaluation
- double perfvalueGPVarApprox( 0.0 );
- double perfvalueGPVar( 0.0 );
- double perfvalueGPMeanApprox( 0.0 );
- double perfvalueGPMean( 0.0 );
- double perfvalueGPSRMean( 0.0 );
- double perfvalueGPSRVar( 0.0 );
- double perfvalueGPFITCMean( 0.0 );
- double perfvalueGPFITCVar( 0.0 );
- double perfvalueGPOptMean( 0.0 );
- double perfvalueGPOptVar( 0.0 );
- double perfvalueParzen( 0.0 );
- double perfvalueSVDD( 0.0 );
- if (GPVarApprox)
- perfvalueGPVarApprox = resultsGPVarApprox.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPVar)
- perfvalueGPVar = resultsGPVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPMeanApprox)
- perfvalueGPMeanApprox = resultsGPMeanApprox.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPMean)
- perfvalueGPMean = resultsGPMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPSRMean)
- perfvalueGPSRMean = resultsGPSRMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPSRVar)
- perfvalueGPSRVar = resultsGPSRVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPFITCMean)
- perfvalueGPFITCMean = resultsGPFITCMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPFITCVar)
- perfvalueGPFITCVar = resultsGPFITCVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPOptMean)
- perfvalueGPOptMean = resultsGPOptMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPOptVar)
- perfvalueGPOptVar = resultsGPOptVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (Parzen)
- perfvalueParzen = resultsParzen.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (SVDD)
- perfvalueSVDD = resultsSVDD.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- std::cerr << "Performance GPVarApprox: " << perfvalueGPVarApprox << std::endl;
- std::cerr << "Performance GPVar: " << perfvalueGPVar << std::endl;
- std::cerr << "Performance GPMeanApprox: " << perfvalueGPMeanApprox << std::endl;
- std::cerr << "Performance GPMean: " << perfvalueGPMean << std::endl;
- std::cerr << "Performance GPSRMean: " << perfvalueGPSRMean << std::endl;
- std::cerr << "Performance GPSRVar: " << perfvalueGPSRVar << std::endl;
- std::cerr << "Performance GPFITCMean: " << perfvalueGPFITCMean << std::endl;
- std::cerr << "Performance GPFITCVar: " << perfvalueGPFITCVar << std::endl;
- std::cerr << "Performance GPOptMean: " << perfvalueGPOptMean << std::endl;
- std::cerr << "Performance GPOptVar: " << perfvalueGPOptVar << std::endl;
- std::cerr << "Performance Parzen: " << perfvalueParzen << std::endl;
- std::cerr << "Performance SVDD: " << perfvalueSVDD << std::endl;
-
- OverallPerformanceGPVarApprox += perfvalueGPVar;
- OverallPerformanceGPVar += perfvalueGPVarApprox;
- OverallPerformanceGPMeanApprox += perfvalueGPMeanApprox;
- OverallPerformanceGPMean += perfvalueGPMean;
- OverallPerformanceGPSRMean += perfvalueGPSRMean;
- OverallPerformanceGPSRVar += perfvalueGPSRVar;
- OverallPerformanceGPFITCMean += perfvalueGPFITCMean;
- OverallPerformanceGPFITCVar += perfvalueGPFITCVar;
- OverallPerformanceGPOptMean += perfvalueGPOptMean;
- OverallPerformanceGPOptVar += perfvalueGPOptVar;
- OverallPerformanceParzen += perfvalueParzen;
- OverallPerformanceSVDD += perfvalueSVDD;
- // clean up memory used by SVDD
- if (SVDD)
- delete svdd;
- }
-
- OverallPerformanceGPVarApprox /= nrOfClassesToConcidere;
- OverallPerformanceGPVar /= nrOfClassesToConcidere;
- OverallPerformanceGPMeanApprox /= nrOfClassesToConcidere;
- OverallPerformanceGPMean /= nrOfClassesToConcidere;
- OverallPerformanceGPSRMean /= nrOfClassesToConcidere;
- OverallPerformanceGPSRVar /= nrOfClassesToConcidere;
- OverallPerformanceGPFITCMean /= nrOfClassesToConcidere;
- OverallPerformanceGPFITCVar /= nrOfClassesToConcidere;
- OverallPerformanceGPOptMean /= nrOfClassesToConcidere;
- OverallPerformanceGPOptVar /= nrOfClassesToConcidere;
- OverallPerformanceParzen /= nrOfClassesToConcidere;
- OverallPerformanceSVDD /= nrOfClassesToConcidere;
-
- std::cerr << "overall performance GPVarApprox: " << OverallPerformanceGPVarApprox << std::endl;
- std::cerr << "overall performance GPVar: " << OverallPerformanceGPVar << std::endl;
- std::cerr << "overall performance GPMeanApprox: " << OverallPerformanceGPMeanApprox << std::endl;
- std::cerr << "overall performance GPMean: " << OverallPerformanceGPMean << std::endl;
- std::cerr << "overall performance GPSRMean: " << OverallPerformanceGPSRMean << std::endl;
- std::cerr << "overall performance GPSRVar: " << OverallPerformanceGPSRVar << std::endl;
- std::cerr << "overall performance GPFITCMean: " << OverallPerformanceGPFITCMean << std::endl;
- std::cerr << "overall performance GPFITCVar: " << OverallPerformanceGPFITCVar << std::endl;
- std::cerr << "overall performance GPOptMean: " << OverallPerformanceGPOptMean << std::endl;
- std::cerr << "overall performance GPOptVar: " << OverallPerformanceGPOptVar << std::endl;
- std::cerr << "overall performance Parzen: " << OverallPerformanceParzen << std::endl;
- std::cerr << "overall performance SVDD: " << OverallPerformanceSVDD << std::endl;
-
- return 0;
- }
- #endif
|