123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- /**
- * @file KMeansHeuristic.cpp
- * @brief K-Means
- * @author Erik Rodner, Michael Koch, Michael Trummer
- * @date 02/04/2011
- */
- #include <iostream>
- #include "vislearning/math/cluster/KMeansHeuristic.h"
- #include "vislearning/math/distances/genericDistance.h"
- #include <set>
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- #undef DEBUG_KMeansHeuristic
- ///////////////////// ///////////////////// /////////////////////
- // CONSTRUCTORS / DESTRUCTORS
- ///////////////////// ///////////////////// /////////////////////
- KMeansHeuristic::KMeansHeuristic() : ClusterAlgorithm()
- {
- this->noClusters = 20;
- this->distanceType = "euclidean";
- this->distancefunction = NULL;
- }
- KMeansHeuristic::KMeansHeuristic(int _noClusters, string _distanceType) :
- noClusters(_noClusters), distanceType(_distanceType)
- {
- //srand(time(NULL));
- this->distancefunction = GenericDistanceSelection::selectDistance(distanceType);
- }
- KMeansHeuristic::KMeansHeuristic( const NICE::Config * _conf, const std::string & _confSection)
- {
- this->initFromConfig( _conf, _confSection );
- }
- KMeansHeuristic::~KMeansHeuristic()
- {
- if ( this->distancefunction != NULL )
- {
- delete this->distancefunction;
- this->distancefunction = NULL ;
- }
- }
- void KMeansHeuristic::initFromConfig( const NICE::Config* _conf, const std::string& _confSection )
- {
- this->noClusters = _conf->gI( _confSection, "noClusters", 20);
- this->distanceType = _conf->gS( _confSection, "distanceType", "euclidean" );
- this->distancefunction = OBJREC::GenericDistanceSelection::selectDistance( this->distanceType );
- }
- ///////////////////// ///////////////////// /////////////////////
- // CLUSTERING STUFF
- ///////////////////// ///////////////////// //////////////////
- void KMeansHeuristic::initial_guess(const VVector & features,
- VVector & prototypes)
- {
- int j = 0;
- std::set<int, std::greater<int> > mark;
- for (VVector::iterator i = prototypes.begin(); i != prototypes.end(); i++, j++)
- {
- int k;
- do
- {
- k = rand() % features.size();
- } while (mark.find(k) != mark.end());
- mark.insert(mark.begin(), k);
- *i = features[k];
- }
- }
- // re-init cluster means
- int KMeansHeuristic::robust_prototypes(const VVector &features, VVector &prototypes,
- std::vector<double> & weights, const std::vector<int> & assignment)
- {
- if (features.size() > 0)
- {
- int dim = features[0].size();
- weights.assign(weights.size(), 0.0);
- int m = 0;
- for (VVector::iterator i = prototypes.begin(); i != prototypes.end(); i++, m++)
- {
- NICE::Vector & p = *i;
- if (NICE::isNaN(p[0]))
- {
- continue;
- }
- int clustersize = 0;
- vector<int> clusterassign(features.size(), 0);
- for (int a = 0; a < (int) assignment.size(); a++)
- {
- if (assignment[a] == m)
- {
- clusterassign[a] = 1;
- clustersize++;
- }
- }
- //cout << "size " << clustersize << endl;
- int cnt = 0;
- while (cnt < clustersize/4)
- {
- //find feature with largest distance to the cluster mean
- double dist = 0, maxdist = 0;
- int maxdistind = 0;
- for (int a = 0; a < (int) clusterassign.size(); a++)
- {
- if (clusterassign[a] == 1)
- {
- dist = 0;
- dist += distancefunction->calculate(p, features[a]);
- if (dist > maxdist)
- {
- maxdist = dist;
- maxdistind = a;
- }
- }
- }
- //detach max-dist feature from the cluster
- clusterassign[maxdistind] = 0;
- cnt++;
- }
- //recalculate the cluster mean
- p=0.0;
- for (int a = 0; a < (int) clusterassign.size(); a++)
- {
- if (clusterassign[a] == 1)
- {
- if (NICE::isNaN(features[a][0]))
- continue;
- p += features[a];
- weights[m]++;
- }
- }
- if (weights[m] <= 0)
- {
- return -1;
- }
- for (int d = 0; d < dim; d++)
- {
- p[d] /= weights[m];
- }
- #ifdef DEBUG_KMeansHeuristic
- cerr << "prototype for class" << m << ":" << p << endl;
- #endif
- }
- }
- return 0;
- }
- double KMeansHeuristic::compute_delta(const VVector & oldprototypes,
- const VVector & prototypes)
- {
- double distance = 0;
- for (uint k = 0; k < oldprototypes.size(); k++)
- distance
- += distancefunction->calculate(oldprototypes[k], prototypes[k]);
- return distance;
- }
- double KMeansHeuristic::compute_assignments(const VVector & features,
- const VVector & prototypes, std::vector<int> & assignment)
- {
- int index = 0;
- for (VVector::const_iterator i = features.begin(); i != features.end(); i++, index++)
- {
- const NICE::Vector & x = *i;
- double mindist = std::numeric_limits<double>::max();
- int minclass = 0;
- int c = 0;
- #ifdef DEBUG_KMeansHeuristic
- fprintf(stderr, "computing nearest prototype for std::vector %d\n",
- index);
- #endif
- for (VVector::const_iterator j = prototypes.begin(); j
- != prototypes.end(); j++, c++)
- {
- const NICE::Vector & p = *j;
- double distance = distancefunction->calculate(p, x);
- #ifdef DEBUG_KMeansHeuristic
- fprintf(stderr, "distance to prototype %d is %f\n", c, distance);
- #endif
- if (distance < mindist)
- {
- minclass = c;
- mindist = distance;
- }
- }
- assignment[index] = minclass;
- }
- return 0.0;
- }
- double KMeansHeuristic::compute_weights(const VVector & features, std::vector<
- double> & weights, std::vector<int> & assignment)
- {
- for (int k = 0; k < noClusters; k++)
- weights[k] = 0;
- int j = 0;
- for (VVector::const_iterator i = features.begin(); i != features.end(); i++, j++)
- {
- int k = assignment[j];
- weights[k]++;
- }
- for (int k = 0; k < noClusters; k++)
- weights[k] = weights[k] / features.size();
- return 0.0;
- }
- void KMeansHeuristic::cluster(const VVector & features, VVector & prototypes,
- std::vector<double> & weights, std::vector<int> & assignment)
- {
- VVector oldprototypes;
- prototypes.clear();
- weights.clear();
- assignment.clear();
- weights.resize(noClusters, 0);
- assignment.resize(features.size(), 0);
- int dimension;
- if ((int) features.size() >= noClusters)
- dimension = features[0].size();
- else
- {
- fprintf(stderr,
- "FATAL ERROR: Not enough feature vectors provided for KMeansHeuristic\n");
- exit(-1);
- }
- for (int k = 0; k < noClusters; k++)
- {
- prototypes.push_back(Vector(dimension));
- prototypes[k].set(0);
- }
- KMeansHeuristic_Restart:
- initial_guess(features, prototypes);
- int iterations = 0;
- double delta = std::numeric_limits<double>::max();
- const double minDelta = 1e-5;
- const int maxIterations = 200;
- do
- {
- iterations++;
- compute_assignments(features, prototypes, assignment);
- if (iterations > 1)
- oldprototypes = prototypes;
- #ifdef DEBUG_KMeansHeuristic
- fprintf(stderr, "KMeansHeuristic::cluster compute_prototypes\n");
- #endif
- //if (compute_prototypes(features, prototypes, weights, assignment) < 0)
- if (robust_prototypes(features, prototypes, weights, assignment) < 0)
- {
- fprintf(stderr, "KMeansHeuristic::cluster restart\n");
- goto KMeansHeuristic_Restart;
- }
- #ifdef DEBUG_KMeansHeuristic
- fprintf(stderr, "KMeansHeuristic::cluster compute_delta\n");
- #endif
- if (iterations > 1)
- delta = compute_delta(oldprototypes, prototypes);
- #ifdef DEBUG_KMeansHeuristic
- print_iteration(iterations, prototypes, delta);
- #endif
- } while ((delta > minDelta) && (iterations < maxIterations));
- #ifdef DEBUG_KMeansHeuristic
- fprintf(stderr, "KMeansHeuristic::cluster: iterations = %d, delta = %f\n",
- iterations, delta);
- #endif
- compute_weights(features, weights, assignment);
- }
- void KMeansHeuristic::print_iteration(int iterations, VVector & prototypes,
- double delta)
- {
- if (iterations > 1)
- fprintf(stderr, "KMeansHeuristic::cluster: iteration=%d delta=%f\n",
- iterations, delta);
- else
- fprintf(stderr, "KMeansHeuristic::cluster: iteration=%d\n", iterations);
- int k = 0;
- for (VVector::const_iterator i = prototypes.begin(); i != prototypes.end(); i++, k++)
- {
- fprintf(stderr, "class (%d)\n", k);
- cerr << "prototype = " << (*i) << endl;
- }
- }
- ///////////////////// INTERFACE PERSISTENT /////////////////////
- // interface specific methods for store and restore
- ///////////////////// INTERFACE PERSISTENT /////////////////////
- void KMeansHeuristic::restore ( std::istream & is, int format )
- {
- //delete everything we knew so far...
- this->clear();
-
-
- if ( is.good() )
- {
-
- std::string tmp;
- is >> tmp; //class name
-
- if ( ! this->isStartTag( tmp, "KMeansHeuristic" ) )
- {
- std::cerr << " WARNING - attempt to restore KMeansHeuristic, but start flag " << tmp << " does not match! Aborting... " << std::endl;
- throw;
- }
-
- bool b_endOfBlock ( false ) ;
-
- while ( !b_endOfBlock )
- {
- is >> tmp; // start of block
-
- if ( this->isEndTag( tmp, "KMeansHeuristic" ) )
- {
- b_endOfBlock = true;
- continue;
- }
-
- tmp = this->removeStartTag ( tmp );
-
- if ( tmp.compare("noClusters") == 0 )
- {
- is >> this->noClusters;
- is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("distanceType") == 0 )
- {
- is >> this->distanceType;
- //TODO fixme
- this->distancefunction = OBJREC::GenericDistanceSelection::selectDistance( this->distanceType );
- is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("distancefunction") == 0 )
- {
- //TODO is >> this->distancefunction;
- is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else
- {
- std::cerr << "WARNING -- unexpected KMeansHeuristic object -- " << tmp << " -- for restoration... aborting" << std::endl;
- throw;
- }
- }
- }
- else
- {
- std::cerr << "KMeansHeuristic::restore -- InStream not initialized - restoring not possible!" << std::endl;
- throw;
- }
- }
- void KMeansHeuristic::store ( std::ostream & os, int format ) const
- {
- if (os.good())
- {
- // show starting point
- os << this->createStartTag( "KMeansHeuristic" ) << std::endl;
-
- os << this->createStartTag( "noClusters" ) << std::endl;
- os << this->noClusters << std::endl;
- os << this->createEndTag( "noClusters" ) << std::endl;
- os << this->createStartTag( "distanceType" ) << std::endl;
- os << this->distanceType << std::endl;
- os << this->createEndTag( "distanceType" ) << std::endl;
-
- os << this->createStartTag( "distancefunction" ) << std::endl;
- //TODO os << this->distancefunction << std::endl;
- os << this->createEndTag( "distancefunction" ) << std::endl;
-
- // done
- os << this->createEndTag( "KMeansHeuristic" ) << std::endl;
- }
- else
- {
- std::cerr << "OutStream not initialized - storing not possible!" << std::endl;
- }
- }
- void KMeansHeuristic::clear ()
- {
- if ( this->distancefunction != NULL )
- {
- delete this->distancefunction;
- this->distancefunction = NULL ;
- }
- }
|