12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388 |
- /**
- * @file testImageNetBinaryBruteForce.cpp
- * @brief perform ImageNet tests with binary tasks for OCC using GP mean and variance, sophisticated approximations of both, Parzen Density Estimation and SVDD
- * @author Alexander Lütz
- * @date 23-05-2012 (dd-mm-yyyy)
- */
- #include <ctime>
- #include <time.h>
- #include "core/basics/Config.h"
- #include "core/basics/Timer.h"
- #include "core/algebra/CholeskyRobust.h"
- #include "core/algebra/DiagonalMatrixApprox.h"
- #include "core/vector/Algorithms.h"
- #include "core/vector/SparseVectorT.h"
- #include "vislearning/cbaselib/ClassificationResults.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "vislearning/classifier/kernelclassifier/KCMinimumEnclosingBall.h"
- #include "fast-hik/tools.h"
- #include "fast-hik/MatFileIO.h"
- #include "fast-hik/ImageNetData.h"
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- // --------------- THE KERNEL FUNCTION ( exponential kernel with euclidian distance ) ----------------------
- double measureDistance ( const NICE::SparseVector & a, const NICE::SparseVector & b, const double & sigma = 2.0)
- {
- double inner_sum(0.0);
- double d;
-
- //new version, where we needed on average 0.001707 s for each test sample
- NICE::SparseVector::const_iterator aIt = a.begin();
- NICE::SparseVector::const_iterator bIt = b.begin();
-
- //compute the euclidian distance between both feature vectores (given as SparseVectors)
- while ( (aIt != a.end()) && (bIt != b.end()) )
- {
- if (aIt->first == bIt->first)
- {
- d = ( aIt->second - bIt->second );
- inner_sum += d * d;
- aIt++;
- bIt++;
- }
- else if ( aIt->first < bIt->first)
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- else
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- }
-
- //compute remaining values, if b reached the end but not a
- while (aIt != a.end())
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- //compute remaining values, if a reached the end but not b
- while (bIt != b.end())
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- //normalization of the exponent
- inner_sum /= (2.0*sigma*sigma);
-
- //finally, compute the RBF-kernel score (RBF = radial basis function)
- return exp(-inner_sum);
- }
- // --------------- INPUT METHOD ----------------------
- void readParameters(string & filename, const int & size, NICE::Vector & parameterVector)
- {
- //we read the parameters which are given from a Matlab-Script (each line contains a single number, which is the optimal parameter for this class)
-
- parameterVector.resize(size);
- parameterVector.set(0.0);
-
- ifstream is(filename.c_str());
- if ( !is.good() )
- fthrow(IOException, "Unable to read parameters.");
- //
- string tmp;
- int cnt(0);
- while (! is.eof())
- {
- is >> tmp;
- parameterVector[cnt] = atof(tmp.c_str());
- cnt++;
- }
- //
- is.close();
- }
- //------------------- TRAINING METHODS --------------------
- void inline trainGPMean(NICE::Vector & GPMeanRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix choleskyMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( kernelMatrix, choleskyMatrix );
-
- GPMeanRightPart.resize(nrOfExamplesPerClass);
- GPMeanRightPart.set(0.0);
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
-
- // pre-compute K^{-1} \cdot y, which is the same for every new test sample
- choleskySolveLargeScale ( choleskyMatrix, y, GPMeanRightPart );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPVar(NICE::Matrix & choleskyMatrix, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- choleskyMatrix.resize(nrOfExamplesPerClass, nrOfExamplesPerClass);
- choleskyMatrix.set(0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot k_* for new test samples
- cr.robustChol ( kernelMatrix, choleskyMatrix );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPMeanApprox(NICE::Vector & GPMeanApproxRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Vector matrixDInv(nrOfExamplesPerClass,0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- matrixDInv.set(noise);
- else
- matrixDInv.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- matrixDInv[i] += kernelMatrix(i,j);
- if (i != j)
- matrixDInv[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse (and multiply every element with the label vector, which contains only one-entries and therefore be skipped...)
- GPMeanApproxRightPart.resize(nrOfExamplesPerClass);
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- GPMeanApproxRightPart[i] = 1.0 / matrixDInv[i];
- }
- }
-
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPMeanApprox training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPVarApprox(NICE::Vector & matrixDInv, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- std::cerr << "nrOfExamplesPerClass : " << nrOfExamplesPerClass << std::endl;
-
- Timer tTrainPreciseTimer;
- tTrainPreciseTimer.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- matrixDInv.resize(nrOfExamplesPerClass);
- matrixDInv.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- matrixDInv.set(noise);
- else
- matrixDInv.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- matrixDInv[i] += kernelMatrix(i,j);
- if (i != j)
- matrixDInv[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- matrixDInv[i] = 1.0 / matrixDInv[i];
- }
- }
-
- tTrainPreciseTimer.stop();
- std::cerr << "Precise time used for GPVarApprox training class " << classNumber << ": " << tTrainPreciseTimer.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP subset of regressors
- void inline trainGPSRMean(NICE::Vector & GPMeanRightPart, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Matrix Kmn (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (int i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Kmn(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kmm (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (int i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (int j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kmm(i,j) = tmp;
- if (i != j)
- Kmm(j,i) = tmp;
- }
- }
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Matrix innerMatrix;
- innerMatrix.multiply(Kmn, Kmn, false /* tranpose first matrix*/, true /* transpose second matrix*/);
-
- innerMatrix.addScaledMatrix( noise, Kmm );
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
- NICE::Vector projectedLabels;
- projectedLabels.multiply(Kmn,y);
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix choleskyMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( innerMatrix, choleskyMatrix );
-
- GPMeanRightPart.resize(indicesOfChosenExamples.size());
- GPMeanRightPart.set(0.0);
-
- // pre-compute K^{-1} \cdot y, which is the same for every new test sample
- choleskySolveLargeScale ( choleskyMatrix, projectedLabels, GPMeanRightPart );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPSRMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- // GP subset of regressors
- void inline trainGPSRVar(NICE::Matrix & choleskyMatrix, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples )
- {
- std::vector<int> examplesToChoose;
- indicesOfChosenExamples.clear();
-
- //add all examples for possible choice
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- examplesToChoose.push_back(i);
- }
-
- //now chose randomly some examples as active subset
- int index;
- for (int i = 0; i < std::min(nrOfRegressors,nrOfExamplesPerClass); i++)
- {
- index = rand() % examplesToChoose.size();
- indicesOfChosenExamples.push_back(examplesToChoose[index]);
- examplesToChoose.erase(examplesToChoose.begin() + index);
- }
-
- NICE::Matrix Kmn (indicesOfChosenExamples.size(), nrOfExamplesPerClass, 0.0);
- int rowCnt(0);
- //set every row
- for (int i = 0; i < indicesOfChosenExamples.size(); i++, rowCnt++ )
- {
- //set every element of this row
- NICE::Vector col = kernelMatrix.getRow(indicesOfChosenExamples[i]);
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- Kmn(rowCnt,j) = col(j);
- }
- }
-
- //we could speed this up if we would order the indices
- NICE::Matrix Kmm (indicesOfChosenExamples.size(), indicesOfChosenExamples.size(), 0.0);
- double tmp(0.0);
- for (int i = 0; i < indicesOfChosenExamples.size(); i++ )
- {
- for (int j = i; j < indicesOfChosenExamples.size(); j++ )
- {
- tmp = kernelMatrix(indicesOfChosenExamples[i], indicesOfChosenExamples[j]);
- Kmm(i,j) = tmp;
- if (i != j)
- Kmm(j,i) = tmp;
- }
- }
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- NICE::Matrix innerMatrix;
- innerMatrix.multiply(Kmn, Kmn, false /* tranpose first matrix*/, true /* transpose second matrix*/);
-
- innerMatrix.addScaledMatrix( noise, Kmm );
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- choleskyMatrix.resize( nrOfExamplesPerClass, nrOfExamplesPerClass );
- choleskyMatrix.set( 0.0 );
-
- //compute the cholesky decomposition of K in order to compute K^{-1} \cdot y
- cr.robustChol ( innerMatrix, choleskyMatrix );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPSRVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPOptMean(NICE::Vector & rightPartGPOptMean, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- DiagonalMatrixApprox diagApprox ( true /*verbose*/ );
- // rightPartGPOptMean.resize(nrOfExamplesPerClass);
-
- NICE::Matrix kInv( nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0 );
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- cr.robustCholInv ( kernelMatrix, kInv );
-
- //we initialize the D-Matrix with the approximation we use in other methods (row sums of kernel matrix)
- rightPartGPOptMean.resize(nrOfExamplesPerClass);
- rightPartGPOptMean.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- rightPartGPOptMean.set(noise);
- else
- rightPartGPOptMean.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- rightPartGPOptMean[i] += kernelMatrix(i,j);
- if (i != j)
- rightPartGPOptMean[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- rightPartGPOptMean[i] = 1.0 / rightPartGPOptMean[i];
- }
-
- // rightPartGPOptMean.set(0.0);
-
- //compute optimal diagonal matrix
- diagApprox.approx ( kernelMatrix, rightPartGPOptMean );
-
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPOptMean training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- void inline trainGPOptVar(NICE::Vector & DiagGPOptVar, const double & noise, const NICE::Matrix & kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
- DiagonalMatrixApprox diagApprox ( true /*verbose*/ );
- DiagGPOptVar.resize(nrOfExamplesPerClass);
-
- NICE::Matrix kInv( nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0 );
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
- cr.robustCholInv ( kernelMatrix, kInv );
-
- // DiagGPOptVar.set(0.0);
-
- //we initialize the D-Matrix with the approximation we use in other methods (row sums of kernel matrix)
- DiagGPOptVar.resize(nrOfExamplesPerClass);
- DiagGPOptVar.set(0.0);
- //compute D
- //start with adding some noise, if necessary
- if (noise != 0.0)
- DiagGPOptVar.set(noise);
- else
- DiagGPOptVar.set(0.0);
-
- // the approximation creates a diagonal matrix (which is easy to invert)
- // with entries equal the row sums of the original kernel matrix
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < nrOfExamplesPerClass; j++)
- {
- DiagGPOptVar[i] += kernelMatrix(i,j);
- if (i != j)
- DiagGPOptVar[j] += kernelMatrix(i,j);
- }
- }
-
- //compute its inverse
- for (int i = 0; i < nrOfExamplesPerClass; i++)
- {
- DiagGPOptVar[i] = 1.0 / DiagGPOptVar[i];
- }
-
- //compute optimal diagonal matrix
- diagApprox.approx ( kernelMatrix, DiagGPOptVar );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for GPOptVar training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- }
- KCMinimumEnclosingBall *trainSVDD( const double & noise, const NICE::Matrix kernelMatrix, const int & nrOfExamplesPerClass, const int & classNumber, const int & runsPerClassToAverageTraining )
- {
-
- Config conf;
- // set the outlier ratio (Paul optimized this paramter FIXME)
- conf.sD( "SVDD", "outlier_fraction", 0.1 );
- conf.sB( "SVDD", "verbose", false );
- KCMinimumEnclosingBall *svdd = new KCMinimumEnclosingBall ( &conf, NULL /* no kernel function */, "SVDD" /* config section */);
- KernelData kernelData ( &conf, kernelMatrix, "Kernel" , false /* update cholesky */ );
-
- Timer tTrainPrecise;
- tTrainPrecise.start();
- for (int run = 0; run < runsPerClassToAverageTraining; run++)
- {
-
- NICE::Vector y(nrOfExamplesPerClass,1.0); //OCC setting :)
- // KCMinimumEnclosingBall does not store the kernel data object, therefore, we are save with passing a local copy
- svdd->teach ( &kernelData, y );
- }
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for SVDD training class " << classNumber << ": " << tTrainPrecise.getLast()/(double)runsPerClassToAverageTraining << std::endl;
- return svdd;
- }
- // ------------- EVALUATION METHODS ---------------------
- void inline evaluateGPVarApprox(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Vector & matrixDInv, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_* where D is our nice approximation of K
-
- NICE::Vector rightPart (kernelVector.size());
- for (int j = 0; j < kernelVector.size(); j++)
- {
- rightPart[j] = kernelVector[j] * matrixDInv[j];
- }
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPVar(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Matrix & choleskyMatrix, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_*
-
- NICE::Vector rightPart (kernelVector.size(),0.0);
- choleskySolveLargeScale ( choleskyMatrix, kernelVector, rightPart );
-
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPMeanApprox(const NICE::Vector & kernelVector, const NICE::Vector & rightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot D^{-1} \cdot y where D is our nice approximation of K
- mean = kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPMean(const NICE::Vector & kernelVector, const NICE::Vector & GPMeanRightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot K^{-1} \cdot y
- mean = kernelVector.scalarProduct ( GPMeanRightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPSRMean(const NICE::Vector & kernelVector, const NICE::Vector & GPSRMeanRightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, const std::vector<int> & indicesOfChosenExamples)
- {
- double mean;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot K^{-1} \cdot y
- mean = kernelVectorM.scalarProduct ( GPSRMeanRightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateGPSRVar(const NICE::Vector & kernelVector, const NICE::Matrix & choleskyMatrix, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting, const int & nrOfRegressors, std::vector<int> & indicesOfChosenExamples, const double & noise)
- {
- double uncertainty;
-
- //grep the entries corresponding to the active set
- NICE::Vector kernelVectorM;
- kernelVectorM.resize(nrOfRegressors);
- for (int i = 0; i < nrOfRegressors; i++)
- {
- kernelVectorM[i] = kernelVector[indicesOfChosenExamples[i]];
- }
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- NICE::Vector rightPart (nrOfRegressors,0.0);
-
- choleskySolveLargeScale ( choleskyMatrix, kernelVectorM, rightPart );
-
- uncertainty = noise*kernelVectorM.scalarProduct ( rightPart );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- //this method is completely the same as evaluateGPMeanApprox, but for convenience, it is its own method
- void inline evaluateGPOptMean(const NICE::Vector & kernelVector, const NICE::Vector & rightPart, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double mean;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // \mean = \k_*^T \cdot D^{-1} \cdot y where D is our nice approximation of K
- mean = kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = mean;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- //this method is completely the same as evaluateGPVarApprox, but for convenience, it is its own method
- void inline evaluateGPOptVar(const NICE::Vector & kernelVector, const double & kernelSelf, const NICE::Vector & matrixDInv, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double uncertainty;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // uncertainty = k{**} - \k_*^T \cdot D^{-1} \cdot k_* where D is our nice approximation of K
-
- NICE::Vector rightPart (kernelVector.size());
- for (int j = 0; j < kernelVector.size(); j++)
- {
- rightPart[j] = kernelVector[j] * matrixDInv[j];
- }
- uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateParzen(const NICE::Vector & kernelVector, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- double score;
-
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- //the Parzen score is nothing but the averaged similarity to every training sample
- score = kernelVector.Sum() / (double) kernelVector.size(); //maybe we could directly call kernelVector.Mean() here
- }
-
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
-
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = score;
- r = ClassificationResult ( scores[1]<0.5 ? 0 : 1, scores );
- }
- void inline evaluateSVDD( KCMinimumEnclosingBall *svdd, const NICE::Vector & kernelVector, ClassificationResult & r, double & timeForSingleExamples, const int & runsPerClassToAverageTesting)
- {
- Timer tTestSingle;
- tTestSingle.start();
-
- for (int run = 0; run < runsPerClassToAverageTesting; run++)
- {
- // In the following, we assume that we are using a Gaussian kernel
- r = svdd->classifyKernel ( kernelVector, 1.0 /* kernel self */ );
- }
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast()/(double)runsPerClassToAverageTesting;
- }
- /**
- test the basic functionality of fast-hik hyperparameter optimization
- */
- int main (int argc, char **argv)
- {
- std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
- Config conf ( argc, argv );
- string resultsfile = conf.gS("main", "results", "results.txt" );
- int nrOfExamplesPerClass = conf.gI("main", "nrOfExamplesPerClass", 50);
- nrOfExamplesPerClass = std::min(nrOfExamplesPerClass, 100); // we do not have more than 100 examples per class
-
- //which classes to considere? we assume consecutive class numers
- int indexOfFirstClass = conf.gI("main", "indexOfFirstClass", 0);
- indexOfFirstClass = std::max(indexOfFirstClass, 0); //we do not have less than 0 classes
- int indexOfLastClass = conf.gI("main", "indexOfLastClass", 999);
- indexOfLastClass = std::min(indexOfLastClass, 999); //we do not have more than 1000 classes
-
- int nrOfClassesToConcidere = (indexOfLastClass - indexOfLastClass)+1;
-
- //repetitions for every class to achieve reliable time evalutions
- int runsPerClassToAverageTraining = conf.gI( "main", "runsPerClassToAverageTraining", 1 );
- int runsPerClassToAverageTesting = conf.gI( "main", "runsPerClassToAverageTesting", 1 );
-
- // share parameters among methods and classes?
- bool shareParameters = conf.gB("main" , "shareParameters", true);
-
- //which methods do we want to use?
- bool GPMeanApprox = conf.gB( "main", "GPMeanApprox", false);
- bool GPVarApprox = conf.gB( "main", "GPVarApprox", false);
- bool GPMean = conf.gB( "main", "GPMean", false);
- bool GPVar = conf.gB( "main", "GPVar", false);
- bool GPSRMean = conf.gB( "main", "GPSRMean", false);
- bool GPSRVar = conf.gB( "main", "GPSRVar", false);
- bool GPOptMean = conf.gB( "main", "GPOptMean", false);
- bool GPOptVar = conf.gB( "main", "GPOptVar", false);
- bool Parzen = conf.gB( "main", "Parzen", false);
- bool SVDD = conf.gB( "main", "SVDD", false);
-
- if (GPMeanApprox)
- std::cerr << "GPMeanApprox used" << std::endl;
- else
- std::cerr << "GPMeanApprox not used" << std::endl;
- if (GPVarApprox)
- std::cerr << "GPVarApprox used" << std::endl;
- else
- std::cerr << "GPVarApprox not used" << std::endl;
- if (GPMean)
- std::cerr << "GPMean used" << std::endl;
- else
- std::cerr << "GPMean not used" << std::endl;
- if (GPVar)
- std::cerr << "GPVar used" << std::endl;
- else
- std::cerr << "GPVar not used" << std::endl;
- if (GPSRMean)
- std::cerr << "GPSRMean used" << std::endl;
- else
- std::cerr << "GPSRMean not used" << std::endl;
- if (GPSRVar)
- std::cerr << "GPSRVar used" << std::endl;
- else
- std::cerr << "GPSRVar not used" << std::endl;
- if (GPOptMean)
- std::cerr << "GPOptMean used" << std::endl;
- else
- std::cerr << "GPOptMean not used" << std::endl;
- if (GPOptVar)
- std::cerr << "GPOptVar used" << std::endl;
- else
- std::cerr << "GPOptVar not used" << std::endl;
- if (Parzen)
- std::cerr << "Parzen used" << std::endl;
- else
- std::cerr << "Parzen not used" << std::endl;
- if (SVDD)
- std::cerr << "SVDD used" << std::endl;
- else
- std::cerr << "SVDD not used" << std::endl;
-
- // GP variance approximation
- NICE::Vector sigmaGPVarApproxParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPVarApproxParas(nrOfClassesToConcidere,0.0);
- // GP variance
- NICE::Vector sigmaGPVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPVarParas(nrOfClassesToConcidere,0.0);
- //GP mean approximation
- NICE::Vector sigmaGPMeanApproxParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPMeanApproxParas(nrOfClassesToConcidere,0.0);
- //GP mean
- NICE::Vector sigmaGPMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPMeanParas(nrOfClassesToConcidere,0.0);
- //GP SR mean
- NICE::Vector sigmaGPSRMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPSRMeanParas(nrOfClassesToConcidere,0.0);
- //GP SR var
- NICE::Vector sigmaGPSRVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPSRVarParas(nrOfClassesToConcidere,0.0);
- //GP Opt mean
- NICE::Vector sigmaGPOptMeanParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPOptMeanParas(nrOfClassesToConcidere,0.0);
- //GP Opt var
- NICE::Vector sigmaGPOptVarParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseGPOptVarParas(nrOfClassesToConcidere,0.0);
- //Parzen
- NICE::Vector sigmaParzenParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseParzenParas(nrOfClassesToConcidere,0.0);
- //SVDD
- NICE::Vector sigmaSVDDParas(nrOfClassesToConcidere,0.0);
- NICE::Vector noiseSVDDParas(nrOfClassesToConcidere,0.0);
-
- if (!shareParameters)
- {
- //read the optimal parameters for the different methods
-
- // GP variance approximation
- string sigmaGPVarApproxFile = conf.gS("main", "sigmaGPVarApproxFile", "approxVarSigma.txt");
- string noiseGPVarApproxFile = conf.gS("main", "noiseGPVarApproxFile", "approxVarNoise.txt");
- // GP variance
- string sigmaGPVarFile = conf.gS("main", "sigmaGPVarFile", "approxVarSigma.txt");
- string noiseGPVarFile = conf.gS("main", "noiseGPVarFile", "approxVarNoise.txt");
- //GP mean approximation
- string sigmaGPMeanApproxFile = conf.gS("main", "sigmaGPMeanApproxFile", "approxVarSigma.txt");
- string noiseGPMeanApproxFile = conf.gS("main", "noiseGPMeanApproxFile", "approxVarNoise.txt");
- //GP mean
- string sigmaGPMeanFile = conf.gS("main", "sigmaGPMeanFile", "approxVarSigma.txt");
- string noiseGPMeanFile = conf.gS("main", "noiseGPMeanFile", "approxVarNoise.txt");
- //Parzen
- string sigmaParzenFile = conf.gS("main", "sigmaParzenFile", "approxVarSigma.txt");
- string noiseParzenFile = conf.gS("main", "noiseParzenFile", "approxVarNoise.txt");
- //SVDD
- string sigmaSVDDFile = conf.gS("main", "sigmaSVDDFile", "approxVarSigma.txt");
- string noiseSVDDFile = conf.gS("main", "noiseSVDDFile", "approxVarNoise.txt");
- // GP variance approximation
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPVarApproxParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPVarApproxParas);
- // GP variance
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPVarParas);
- //GP mean approximation
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPMeanApproxParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPMeanApproxParas);
- //GP mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPMeanParas);
- //GP SR mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPSRMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPSRMeanParas);
- //GP SR var
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPSRVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPSRVarParas);
- //GP Opt mean
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPOptMeanParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPOptMeanParas);
- //GP Opt var
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaGPOptVarParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseGPOptVarParas);
- //Parzen
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaParzenParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseParzenParas);
- //SVDD
- readParameters(sigmaGPVarApproxFile,nrOfClassesToConcidere, sigmaSVDDParas);
- readParameters(noiseGPVarApproxFile,nrOfClassesToConcidere, noiseSVDDParas);
- }
- else
- {
- //use static variables for all methods and classis
- double noise = conf.gD( "main", "noise", 0.01 );
- double sigma = conf.gD( "main", "sigma", 1.0 );
-
- sigmaGPVarApproxParas.set(sigma);
- noiseGPVarApproxParas.set(noise);
- // GP variance
- sigmaGPVarParas.set(sigma);
- noiseGPVarParas.set(noise);
- //GP mean approximation
- sigmaGPMeanApproxParas.set(sigma);
- noiseGPMeanApproxParas.set(noise);
- //GP mean
- sigmaGPMeanParas.set(sigma);
- noiseGPMeanParas.set(noise);
- //GP SR mean
- sigmaGPSRMeanParas.set(sigma);
- noiseGPSRMeanParas.set(noise);
- //GP SR var
- sigmaGPSRVarParas.set(sigma);
- noiseGPSRVarParas.set(noise);
- //GP Opt mean
- sigmaGPOptMeanParas.set(sigma);
- noiseGPOptMeanParas.set(noise);
- //GP Opt var
- sigmaGPOptVarParas.set(sigma);
- noiseGPOptVarParas.set(noise);
- //Parzen
- sigmaParzenParas.set(sigma);
- noiseParzenParas.set(noise);
- //SVDD
- sigmaSVDDParas.set(sigma);
- noiseSVDDParas.set(noise);
- }
-
-
- // -------- optimal parameters read --------------
-
- std::vector<SparseVector> trainingData;
- NICE::Vector y;
-
- std::cerr << "Reading ImageNet data ..." << std::endl;
- bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
- string imageNetPath;
- if (imageNetLocal)
- imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
- else
- imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
- ImageNetData imageNetTrain ( imageNetPath + "demo/" );
- imageNetTrain.preloadData( "train", "training" );
- trainingData = imageNetTrain.getPreloadedData();
- y = imageNetTrain.getPreloadedLabels();
-
- std::cerr << "Reading of training data finished" << std::endl;
- std::cerr << "trainingData.size(): " << trainingData.size() << std::endl;
- std::cerr << "y.size(): " << y.size() << std::endl;
-
- std::cerr << "Reading ImageNet test data files (takes some seconds)..." << std::endl;
- ImageNetData imageNetTest ( imageNetPath + "demo/" );
- imageNetTest.preloadData ( "val", "testing" );
- imageNetTest.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
-
- double OverallPerformanceGPVarApprox(0.0);
- double OverallPerformanceGPVar(0.0);
- double OverallPerformanceGPMeanApprox(0.0);
- double OverallPerformanceGPMean(0.0);
- double OverallPerformanceGPSRMean(0.0);
- double OverallPerformanceGPSRVar(0.0);
- double OverallPerformanceGPOptMean(0.0);
- double OverallPerformanceGPOptVar(0.0);
- double OverallPerformanceParzen(0.0);
- double OverallPerformanceSVDD(0.0);
-
- double kernelSigmaGPVarApprox;
- double kernelSigmaGPVar;
- double kernelSigmaGPMeanApprox;
- double kernelSigmaGPMean;
- double kernelSigmaGPSRMean;
- double kernelSigmaGPSRVar;
- double kernelSigmaGPOptMean;
- double kernelSigmaGPOptVar;
- double kernelSigmaParzen;
- double kernelSigmaSVDD;
-
- for (int cl = indexOfFirstClass; cl <= indexOfLastClass; cl++)
- {
- std::cerr << "run for class " << cl << std::endl;
- int positiveClass = cl+1; //labels are from 1 to 1000, but our indices from 0 to 999
- // ------------------------------ TRAINING ------------------------------
-
- kernelSigmaGPVarApprox = sigmaGPVarApproxParas[cl];
- kernelSigmaGPVar = sigmaGPVarParas[cl];
- kernelSigmaGPMeanApprox = sigmaGPMeanApproxParas[cl];
- kernelSigmaGPMean = sigmaGPMeanParas[cl];
- kernelSigmaGPSRMean = sigmaGPSRMeanParas[cl];
- kernelSigmaGPSRVar = sigmaGPSRVarParas[cl];
- kernelSigmaGPOptMean = sigmaGPOptMeanParas[cl];
- kernelSigmaGPOptVar = sigmaGPOptVarParas[cl];
- kernelSigmaParzen = sigmaParzenParas[cl];
- kernelSigmaSVDD = sigmaSVDDParas[cl];
-
- Timer tTrain;
- tTrain.start();
-
- //compute the kernel matrix, which will be shared among all methods in this scenario
- NICE::Matrix kernelMatrix(nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //NOTE in theory we have to compute a single kernel Matrix for every method, since every method may have its own optimal parameter
- // I'm sure, we can speed it up a bit and compute it only for every different parameter
- //nonetheless, it's not as nice as we originally thought (same matrix for every method)
-
- //NOTE Nonetheless, since we're only interested in runtimes, we can ignore this
-
- //now sum up all entries of each row in the original kernel matrix
- double kernelScore(0.0);
- for (int i = cl*100; i < cl*100+nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < cl*100+nrOfExamplesPerClass; j++)
- {
- kernelScore = measureDistance(trainingData[i],trainingData[j], kernelSigmaGPVarApprox);
- kernelMatrix(i-cl*100,j-cl*100) = kernelScore;
-
- if (i != j)
- kernelMatrix(j-cl*100,i-cl*100) = kernelScore;
- }
- }
-
- // now call the individual training methods
-
- //train GP Mean Approx
- NICE::Vector GPMeanApproxRightPart;
- if (GPMeanApprox)
- trainGPMeanApprox(GPMeanApproxRightPart, noiseGPMeanApproxParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Var Approx
- NICE::Vector matrixDInv;
- if (GPVarApprox)
- trainGPVarApprox(matrixDInv, noiseGPVarApproxParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Mean
- NICE::Vector GPMeanRightPart;
- if (GPMean)
- trainGPMean(GPMeanRightPart, noiseGPMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP Var
- NICE::Matrix GPVarCholesky;
- if (GPVar)
- trainGPVar(GPVarCholesky, noiseGPVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- //train GP SR Mean
- NICE::Vector GPSRMeanRightPart;
- std::vector<int> indicesOfChosenExamplesGPSRMean;
- int nrOfRegressors = conf.gI( "GPSR", "nrOfRegressors", nrOfExamplesPerClass/2);
- nrOfRegressors = std::min( nrOfRegressors, nrOfExamplesPerClass );
- if (GPSRMean)
- trainGPSRMean(GPSRMeanRightPart, noiseGPSRMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPSRMean );
-
- //train GP SR Var
- NICE::Matrix GPSRVarCholesky;
- std::vector<int> indicesOfChosenExamplesGPSRVar;
- if (GPSRVar)
- trainGPSRVar(GPSRVarCholesky, noiseGPSRVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining, nrOfRegressors, indicesOfChosenExamplesGPSRVar );
-
- //train GP Opt Mean
- NICE::Vector GPOptMeanRightPart;
- if (GPOptMean)
- trainGPOptMean(GPOptMeanRightPart, noiseGPOptMeanParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
- std::cerr << "GPOptMeanRightPart: " << std::endl; std::cerr << GPOptMeanRightPart << std::endl;
-
- //train GP Opt Var
- NICE::Vector DiagGPOptVar;
- if (GPOptVar)
- trainGPOptVar(DiagGPOptVar, noiseGPOptVarParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
- std::cerr << "DiagGPOptVar: " << std::endl; std::cerr << DiagGPOptVar << std::endl;
-
- //train Parzen
- //nothing to do :)
-
- //train SVDD
- KCMinimumEnclosingBall *svdd;
- if (SVDD)
- svdd = trainSVDD(noiseSVDDParas[cl], kernelMatrix, nrOfExamplesPerClass, cl, runsPerClassToAverageTraining );
-
- tTrain.stop();
- std::cerr << "Time used for training class " << cl << ": " << tTrain.getLast() << std::endl;
-
- std::cerr << "training done - now perform the evaluation" << std::endl;
- // ------------------------------ TESTING ------------------------------
-
- std::cerr << "Classification step ... with " << imageNetTest.getNumPreloadedExamples() << " examples" << std::endl;
-
- ClassificationResults resultsGPVarApprox;
- ClassificationResults resultsGPVar;
- ClassificationResults resultsGPMeanApprox;
- ClassificationResults resultsGPMean;
- ClassificationResults resultsGPSRMean;
- ClassificationResults resultsGPSRVar;
- ClassificationResults resultsGPOptMean;
- ClassificationResults resultsGPOptVar;
- ClassificationResults resultsParzen;
- ClassificationResults resultsSVDD;
-
- ProgressBar pb;
- Timer tTest;
- tTest.start();
- Timer tTestSingle;
-
- double timeForSingleExamplesGPVarApprox(0.0);
- double timeForSingleExamplesGPVar(0.0);
- double timeForSingleExamplesGPMeanApprox(0.0);
- double timeForSingleExamplesGPMean(0.0);
- double timeForSingleExamplesGPSRMean(0.0);
- double timeForSingleExamplesGPSRVar(0.0);
- double timeForSingleExamplesGPOptMean(0.0);
- double timeForSingleExamplesGPOptVar(0.0);
- double timeForSingleExamplesParzen(0.0);
- double timeForSingleExamplesSVDD(0.0);
-
- for ( uint i = 0 ; i < (uint)imageNetTest.getNumPreloadedExamples(); i++ )
- {
- pb.update ( imageNetTest.getNumPreloadedExamples() );
- const SparseVector & svec = imageNetTest.getPreloadedExample ( i );
- //NOTE: again we should use method-specific optimal parameters. If we're only interested in the runtimes, this doesn't matter
-
- //compute (self) similarities
- double kernelSelf (measureDistance(svec,svec, kernelSigmaGPVarApprox) );
- NICE::Vector kernelVector (nrOfExamplesPerClass, 0.0);
-
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- kernelVector[j] = measureDistance(trainingData[j+cl*100],svec, kernelSigmaGPVarApprox);
- }
-
- //call the individual test-methods
-
- //evaluate GP Var Approx
- ClassificationResult rGPVarApprox;
- if (GPVarApprox)
- evaluateGPVarApprox( kernelVector, kernelSelf, matrixDInv, rGPVarApprox, timeForSingleExamplesGPVarApprox, runsPerClassToAverageTesting );
-
- //evaluate GP Var
- ClassificationResult rGPVar;
- if (GPVar)
- evaluateGPVar( kernelVector, kernelSelf, GPVarCholesky, rGPVar, timeForSingleExamplesGPVar, runsPerClassToAverageTesting );
-
- //evaluate GP Mean Approx
- ClassificationResult rGPMeanApprox;
- if (GPMeanApprox)
- evaluateGPMeanApprox( kernelVector, matrixDInv, rGPMeanApprox, timeForSingleExamplesGPMeanApprox, runsPerClassToAverageTesting );
-
- //evaluate GP Mean
- ClassificationResult rGPMean;
- if (GPMean)
- evaluateGPMean( kernelVector, GPMeanRightPart, rGPMean, timeForSingleExamplesGPMean, runsPerClassToAverageTesting );
-
- //evaluate GP SR Mean
- ClassificationResult rGPSRMean;
- if (GPSRMean)
- evaluateGPSRMean( kernelVector, GPSRMeanRightPart, rGPSRMean, timeForSingleExamplesGPSRMean, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPSRMean );
-
- //evaluate GP SR Var
- ClassificationResult rGPSRVar;
- if (GPSRVar)
- evaluateGPSRVar( kernelVector, GPSRVarCholesky, rGPSRVar, timeForSingleExamplesGPSRVar, runsPerClassToAverageTesting, nrOfRegressors, indicesOfChosenExamplesGPSRVar, noiseGPSRVarParas[cl] );
-
- //evaluate GP Opt Mean
- ClassificationResult rGPOptMean;
- if (GPOptMean)
- evaluateGPOptMean( kernelVector, GPOptMeanRightPart, rGPOptMean, timeForSingleExamplesGPOptMean, runsPerClassToAverageTesting );
-
- //evaluate GP Opt Var
- ClassificationResult rGPOptVar;
- if (GPOptVar)
- evaluateGPOptVar( kernelVector, kernelSelf, DiagGPOptVar, rGPOptVar, timeForSingleExamplesGPOptVar, runsPerClassToAverageTesting );
-
- //evaluate Parzen
- ClassificationResult rParzen;
- if (Parzen)
- evaluateParzen( kernelVector, rParzen, timeForSingleExamplesParzen, runsPerClassToAverageTesting );
-
- //evaluate SVDD
- ClassificationResult rSVDD;
- if (SVDD)
- evaluateSVDD( svdd, kernelVector, rSVDD, timeForSingleExamplesSVDD, runsPerClassToAverageTesting );
-
- // set ground truth label
- rGPVarApprox.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPMeanApprox.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPSRMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPSRVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPOptMean.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rGPOptVar.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rParzen.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- rSVDD.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
- //remember the results for the evaluation lateron
- resultsGPVarApprox.push_back ( rGPVarApprox );
- resultsGPVar.push_back ( rGPVar );
- resultsGPMeanApprox.push_back ( rGPMeanApprox );
- resultsGPMean.push_back ( rGPMean );
- resultsGPSRMean.push_back ( rGPSRMean );
- resultsGPSRVar.push_back ( rGPSRVar );
- resultsGPOptMean.push_back ( rGPOptMean );
- resultsGPOptVar.push_back ( rGPOptVar );
- resultsParzen.push_back ( rParzen );
- resultsSVDD.push_back ( rSVDD );
- }
-
- tTest.stop();
- std::cerr << "Time used for evaluating class " << cl << ": " << tTest.getLast() << std::endl;
-
- timeForSingleExamplesGPVarApprox/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPMeanApprox/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPSRMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPSRVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPOptMean/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesGPOptVar/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesParzen/= imageNetTest.getNumPreloadedExamples();
- timeForSingleExamplesSVDD/= imageNetTest.getNumPreloadedExamples();
-
- std::cerr << "GPVarApprox -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPVarApprox << std::endl;
- std::cerr << "GPVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPVar << std::endl;
- std::cerr << "GPMeanApprox -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPMeanApprox << std::endl;
- std::cerr << "GPMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPMean << std::endl;
- std::cerr << "GPSRMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPSRMean << std::endl;
- std::cerr << "GPSRVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPSRVar << std::endl;
- std::cerr << "GPOptMean -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPOptMean << std::endl;
- std::cerr << "GPOptVar -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesGPOptVar << std::endl;
- std::cerr << "Parzen -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesParzen << std::endl;
- std::cerr << "SVDD -- time used for evaluation single elements of class " << cl << " : " << timeForSingleExamplesSVDD << std::endl;
- // run the AUC-evaluation
- double perfvalueGPVarApprox( 0.0 );
- double perfvalueGPVar( 0.0 );
- double perfvalueGPMeanApprox( 0.0 );
- double perfvalueGPMean( 0.0 );
- double perfvalueGPSRMean( 0.0 );
- double perfvalueGPSRVar( 0.0 );
- double perfvalueGPOptMean( 0.0 );
- double perfvalueGPOptVar( 0.0 );
- double perfvalueParzen( 0.0 );
- double perfvalueSVDD( 0.0 );
- if (GPVarApprox)
- perfvalueGPVarApprox = resultsGPVarApprox.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPVar)
- perfvalueGPVar = resultsGPVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPMeanApprox)
- perfvalueGPMeanApprox = resultsGPMeanApprox.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPMean)
- perfvalueGPMean = resultsGPMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPSRMean)
- perfvalueGPSRMean = resultsGPSRMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPSRVar)
- perfvalueGPSRVar = resultsGPSRVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPOptMean)
- perfvalueGPOptMean = resultsGPOptMean.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (GPOptVar)
- perfvalueGPOptVar = resultsGPOptVar.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (Parzen)
- perfvalueParzen = resultsParzen.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- if (SVDD)
- perfvalueSVDD = resultsSVDD.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- std::cerr << "Performance GPVarApprox: " << perfvalueGPVarApprox << std::endl;
- std::cerr << "Performance GPVar: " << perfvalueGPVar << std::endl;
- std::cerr << "Performance GPMeanApprox: " << perfvalueGPMeanApprox << std::endl;
- std::cerr << "Performance GPMean: " << perfvalueGPMean << std::endl;
- std::cerr << "Performance GPSRMean: " << perfvalueGPSRMean << std::endl;
- std::cerr << "Performance GPSRVar: " << perfvalueGPSRVar << std::endl;
- std::cerr << "Performance GPOptMean: " << perfvalueGPOptMean << std::endl;
- std::cerr << "Performance GPOptVar: " << perfvalueGPOptVar << std::endl;
- std::cerr << "Performance Parzen: " << perfvalueParzen << std::endl;
- std::cerr << "Performance SVDD: " << perfvalueSVDD << std::endl;
-
- OverallPerformanceGPVarApprox += perfvalueGPVar;
- OverallPerformanceGPVar += perfvalueGPVarApprox;
- OverallPerformanceGPMeanApprox += perfvalueGPMeanApprox;
- OverallPerformanceGPMean += perfvalueGPMean;
- OverallPerformanceGPSRMean += perfvalueGPSRMean;
- OverallPerformanceGPSRVar += perfvalueGPSRVar;
- OverallPerformanceGPOptMean += perfvalueGPOptMean;
- OverallPerformanceGPOptVar += perfvalueGPOptVar;
- OverallPerformanceParzen += perfvalueParzen;
- OverallPerformanceSVDD += perfvalueSVDD;
- // clean up memory used by SVDD
- if (SVDD)
- delete svdd;
- }
-
- OverallPerformanceGPVarApprox /= nrOfClassesToConcidere;
- OverallPerformanceGPVar /= nrOfClassesToConcidere;
- OverallPerformanceGPMeanApprox /= nrOfClassesToConcidere;
- OverallPerformanceGPMean /= nrOfClassesToConcidere;
- OverallPerformanceGPSRMean /= nrOfClassesToConcidere;
- OverallPerformanceGPSRVar /= nrOfClassesToConcidere;
- OverallPerformanceGPOptMean /= nrOfClassesToConcidere;
- OverallPerformanceGPOptVar /= nrOfClassesToConcidere;
- OverallPerformanceParzen /= nrOfClassesToConcidere;
- OverallPerformanceSVDD /= nrOfClassesToConcidere;
-
- std::cerr << "overall performance GPVarApprox: " << OverallPerformanceGPVarApprox << std::endl;
- std::cerr << "overall performance GPVar: " << OverallPerformanceGPVar << std::endl;
- std::cerr << "overall performance GPMeanApprox: " << OverallPerformanceGPMeanApprox << std::endl;
- std::cerr << "overall performance GPMean: " << OverallPerformanceGPMean << std::endl;
- std::cerr << "overall performance GPSRMean: " << OverallPerformanceGPSRMean << std::endl;
- std::cerr << "overall performance GPSRVar: " << OverallPerformanceGPSRVar << std::endl;
- std::cerr << "overall performance GPOptMean: " << OverallPerformanceGPOptMean << std::endl;
- std::cerr << "overall performance GPOptVar: " << OverallPerformanceGPOptVar << std::endl;
- std::cerr << "overall performance Parzen: " << OverallPerformanceParzen << std::endl;
- std::cerr << "overall performance SVDD: " << OverallPerformanceSVDD << std::endl;
-
- return 0;
- }
|