123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- /**
- * @file PCA.cpp
- * @brief Computation of a PCA by Eigenvalue Decomposition, Karhunen Loewe Transform
- * @author Michael Koch
- * @date 5/27/2008
- */
- /** \example testPCA.cpp
- * This is an example of how to use the Principal Component Analysis (PCA) class.
- */
- // #define DEBUG
- #undef DEBUG
- #include <iostream>
- #include <math.h>
- #include <vector>
- #include <map>
- #include "core/algebra/GenericMatrix.h"
- #include "core/algebra/EigValues.h"
- #include "core/algebra/EigValuesTRLAN.h"
- // #include "vislearning/fourier/FourierLibrary.h"
- #include "PCA.h"
- #include "vislearning/baselib/Gnuplot.h"
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- PCA::PCA(uint dim, uint maxiteration, double mindelta)
- {
- init(dim, maxiteration, mindelta);
- }
- PCA::PCA(void)
- {
- init();
- }
- PCA::~PCA()
- {
- }
- void PCA::init(uint dim, uint maxiteration, double mindelta)
- {
- this->targetDimension = dim;
- this->maxiteration = maxiteration;
- this->mindelta = mindelta;
- }
- void PCA::restore(istream & is, int format)
- {
- is >> basis;
- is >> normalization;
- is >> mean;
- is >> targetDimension;
- }
- void PCA::store(ostream & os, int format) const
- {
- os << basis << normalization << mean << targetDimension;
- }
- void PCA::clear()
- {
- }
- void PCA::calculateBasis(const NICE::Matrix &features,
- const uint targetDimension, const uint mode)
- {
- calculateBasis(features, targetDimension, false);
- }
- void PCA::calculateMean ( const NICE::Matrix &features, NICE::Vector & mean )
- {
- // data vectors are put row-wise in the matrix
- mean.resize(features.cols());
- for ( uint i = 0 ; i < features.rows(); i++ )
- mean = mean + features.getRow(i);
- }
- void PCA::calculateBasis(const NICE::Matrix &features,
- const uint targetDimension, const bool adaptive,
- const double targetRatio)
- {
- this->targetDimension = targetDimension;
- // dimension of the feature vectors
- uint srcFeatureSize = features.cols();
- uint mindimension = std::min(this->targetDimension, srcFeatureSize);
- NICE::Matrix eigenvectors;
- NICE::Vector eigenvalue;
-
- calculateMean(features, mean);
- #ifdef NICE_USELIB_TRLAN
- EigValues *eig = new EigValuesTRLAN();//fast lanczos TRLAN
- #else
- EigValues *eig = new EVArnoldi();//Arnoldi for (srcFeatureSize<n)
- #endif
- NICE::Matrix features_transpose = features.transpose();
- GMCovariance C(&features_transpose);
- if (adaptive)
- {
- eig->getEigenvalues(C, eigenvalue, eigenvectors, srcFeatureSize);
- }
- else
- {
- eig->getEigenvalues(C, eigenvalue, eigenvectors, mindimension);
- }
- #ifdef DEBUG
- fprintf(stderr, "Eigenvalue Decomposition ready \n");
- cerr << eigenvectors << endl;
- cerr << eigenvalue << endl;
- //sort values
- fprintf(stderr, "Eigenvector-Rows:%i Eigenvector-Cols:%i\n", (int)eigenvectors.rows(), (int)eigenvectors.cols());
- #endif
- multimap<double, NICE::Vector> map;
- double sumeigen = 0.0;
- NICE::Vector ratio(eigenvectors.cols());
- for (uint i = 0; i < eigenvectors.cols(); i++)//every eigenvector
- {
- NICE::Vector eigenvector(srcFeatureSize);
- for (uint k = 0; k < srcFeatureSize; k++)
- {
- eigenvector[k] = eigenvectors(k, i);
- }
- map.insert(pair<double, NICE::Vector> (eigenvalue[i], eigenvector));
- sumeigen += eigenvalue[i];
- }
- //compute basis size
- if (adaptive)
- { //compute target dimension
- uint dimensioncount = 0;
- double addedratio = 0.0;
- multimap<double, NICE::Vector>::reverse_iterator it = map.rbegin();
- while (addedratio <= targetRatio && it != map.rend())
- {
- //calc ratio
- ratio[dimensioncount] = (*it).first / sumeigen;
- addedratio += ratio[dimensioncount];
- dimensioncount++;
- it++;
- }
- this->targetDimension = dimensioncount;
- }
- mindimension = std::min(this->targetDimension, srcFeatureSize);
- this->targetDimension = mindimension;
- basis = NICE::Matrix(srcFeatureSize, mindimension);
- //get sorted values
- uint count = 0;
- multimap<double, NICE::Vector>::reverse_iterator it = map.rbegin();
- while (count < this->targetDimension && it != map.rend())
- {
- NICE::Vector eigenvector = (*it).second;
- //put eigenvector into column
- for (uint k = 0; k < srcFeatureSize; k++)
- {
- basis(k, count) = eigenvector[k];
- }
- //calc ratio
- ratio[count] = (*it).first / sumeigen;
- count++;
- it++;
- }
- //normalization matrix / modify variance to 1 for all eigenvectors
- normalization = NICE::Matrix(mindimension, mindimension, 0);
- for (uint k = 0; k < mindimension; k++)
- {
- normalization(k, k) = 1.0 / sqrt(eigenvalue[k]);
- }
- #ifdef DEBUG
- cout << "Eigenvalue-absolute:" << eigenvalue << endl;
- cout << "Eigenvalue-ratio:" << ratio << endl;
- #endif
- }
- NICE::Vector PCA::getFeatureVector(const NICE::Vector &data,
- const bool normalize)
- {
- //free data of mean
- if (normalize)
- {
- NICE::Vector meanfree(data);
- meanfree -= mean;
- //Y=W^t * B^T
- if(normbasis.rows() == 0)
- normbasis.multiply(normalization, basis, false, true);
- NICE::Vector tmp;
- tmp.multiply(normbasis, meanfree);
- return tmp;
- }
- else
- {
- NICE::Vector meanfree(data);
- meanfree -= mean;
- //Y=W^t * B^T
- NICE::Vector tmp;
- tmp.multiply(basis, meanfree, true);
- return tmp;
- }
- }
- NICE::Vector PCA::getMean()
- {
- return mean;
- }
- NICE::Matrix PCA::getBasis()
- {
- return basis;
- }
- int PCA::getTargetDim()
- {
- return targetDimension;
- }
|