1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- /**
- * @file RunningStat.cpp
- * @brief B. P. Welford Computation of Mean and Variance download at: http://www.johndcook.com/standard_deviation.html
- * @author Michael Koch
- * @date 18/02/2009
- */
- #include "core/image/ImageT.h"
- #include "core/vector/VectorT.h"
- #include "core/vector/MatrixT.h"
- #include "vislearning/baselib/RunningStat.h"
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- void RunningStat::Clear()
- {
- m_n = 0;
- }
- void RunningStat::Push(double x)
- {
- m_n++;
- // See Knuth TAOCP vol 2, 3rd edition, page 232
- if (m_n == 1)
- {
- m_oldM = m_newM = x;
- m_oldS = 0.0;
- }
- else
- {
- m_newM = m_oldM + (x - m_oldM)/m_n;
- m_newS = m_oldS + (x - m_oldM)*(x - m_newM);
-
- // set up for next iteration
- m_oldM = m_newM;
- m_oldS = m_newS;
- }
- }
- size_t RunningStat::NumDataValues() const
- {
- return m_n;
- }
- double RunningStat::Mean() const
- {
- return (m_n > 0) ? m_newM : 0.0;
- }
- double RunningStat::Variance() const
- {
- return ( (m_n > 1) ? m_newS/(m_n - 1) : 0.0 );
- }
- double RunningStat::StandardDeviation() const
- {
- return sqrt( Variance() );
- }
|