LFColorWeijer.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. #include "vislearning/features/localfeatures/LFColorWeijer.h"
  2. #include <fstream>
  3. #include <iostream>
  4. #include "vislearning/baselib/ColorSpace.h"
  5. using namespace OBJREC;
  6. using namespace std;
  7. using namespace NICE;
  8. //! color representation for visualization
  9. const int colors[11][3] =
  10. {
  11. {0, 0, 0}, // black
  12. {0, 0, 255}, // blue
  13. {165, 42, 42}, // brown
  14. {190, 190, 190}, // grey
  15. { 0, 255, 0}, // green
  16. {255, 165, 0}, // orange
  17. {255, 192, 203}, // pink
  18. {160, 32, 240}, // purple
  19. {255, 0, 0}, // red
  20. {255, 255, 255}, // white
  21. {255, 255, 0}, // yellow
  22. };
  23. LFColorWeijer::LFColorWeijer( const Config *c )
  24. {
  25. conf = c;
  26. bin[0] = conf->gI( "LFColorWeijer", "binL", 10 );
  27. bin[1] = conf->gI( "LFColorWeijer", "bina", 20 );
  28. bin[2] = conf->gI( "LFColorWeijer", "binb", 20 );
  29. maxv[0] = 100.0;
  30. maxv[1] = 80.0;
  31. maxv[2] = 50.0;
  32. minv[0] = 0.0;
  33. minv[1] = -105.0;
  34. minv[2] = -200.0;
  35. tfile = conf->gS( "LFColorWeijer", "table", "/home/dbv/bilder/colorWeijer/color.txt" );
  36. for ( int i = 0; i < 3; i++ )
  37. {
  38. interval[i] = ( maxv[i] - minv[i] ) / ( double )bin[i];
  39. }
  40. ifstream test( tfile.c_str() );
  41. if ( test )
  42. {
  43. restore();
  44. }
  45. else
  46. {
  47. train();
  48. }
  49. }
  50. LFColorWeijer::~LFColorWeijer()
  51. {
  52. for ( uint i = 0; i < hist.size(); i++ )
  53. {
  54. for ( uint j = 0; j < hist[i].size(); j++ )
  55. {
  56. hist[i][j].clear();
  57. }
  58. hist[i].clear();
  59. }
  60. hist.clear();
  61. }
  62. int LFColorWeijer::getDescSize() const
  63. {
  64. return LASTCOLOR;
  65. }
  66. void LFColorWeijer::store()
  67. {
  68. ofstream fout( tfile.c_str(), ios_base::app );
  69. fout << hist.size() << " " << hist[0].size() << " " << hist[0][0].size() << " " << hist[0][0][0].size() << endl;
  70. for ( uint i = 0; i < hist.size(); i++ )
  71. {
  72. for ( uint i0 = 0; i0 < hist[i].size(); i0++ )
  73. {
  74. for ( uint i1 = 0; i1 < hist[i][i0].size(); i1++ )
  75. {
  76. for ( uint i2 = 0; i2 < hist[i][i0][i1].size(); i2++ )
  77. {
  78. fout << hist[i][i0][i1][i2] << " ";
  79. }
  80. }
  81. }
  82. }
  83. }
  84. void LFColorWeijer::smooth()
  85. {
  86. int size0 = ( int )hist.size();
  87. int size1 = ( int )hist[0].size();
  88. int size2 = ( int )hist[0][0].size();
  89. int size3 = ( int )hist[0][0][0].size();
  90. for ( int i0 = 0; i0 < size1; i0++ )
  91. {
  92. for ( int i1 = 0; i1 < size2; i1++ )
  93. {
  94. for ( int i2 = 0; i2 < size3; i2++ )
  95. {
  96. double maxval = 0.0;
  97. for ( int i = 0; i < size0; i++ )
  98. {
  99. maxval = std::max( maxval, hist[i][i0][i1][i2] );
  100. }
  101. if ( maxval == 0.0 )
  102. {
  103. for ( int i = 0; i < size0; i++ )
  104. {
  105. int anz = 0;
  106. for ( int a0 = std::max( i0 - 1, 0 ); a0 <= std::min( i0 + 1, size1 - 1 ); a0++ )
  107. {
  108. for ( int a1 = std::max( i1 - 1, 0 ); a1 <= std::min( i1 + 1, size2 - 1 ); a1++ )
  109. {
  110. for ( int a2 = std::max( i2 - 1, 0 ); a2 <= std::min( i2 + 1, size3 - 1 ); a2++ )
  111. {
  112. anz++;
  113. hist[i][i0][i1][i2] += hist[i][a0][a1][a2];
  114. }
  115. }
  116. }
  117. hist[i][i0][i1][i2] /= anz;
  118. }
  119. }
  120. }
  121. }
  122. }
  123. }
  124. void LFColorWeijer::restore()
  125. {
  126. int size0, size1, size2, size3;
  127. ifstream fin( tfile.c_str() );
  128. fin >> size0;
  129. fin >> size1;
  130. fin >> size2;
  131. fin >> size3;
  132. hist.clear();
  133. for ( int i = 0; i < size0; i++ )
  134. {
  135. vector<vector<vector<double> > > v2;
  136. for ( int i0 = 0; i0 < size1; i0++ )
  137. {
  138. vector<vector<double> > v1;
  139. for ( int i1 = 0; i1 < size2; i1++ )
  140. {
  141. vector<double> v0;
  142. for ( int i2 = 0; i2 < size3; i2++ )
  143. {
  144. double val;
  145. fin >> val;
  146. v0.push_back( val );
  147. }
  148. v1.push_back( v0 );
  149. }
  150. v2.push_back( v1 );
  151. }
  152. hist.push_back( v2 );
  153. }
  154. }
  155. int LFColorWeijer::getDescriptors( const NICE::Image & img, VVector & positions, VVector & features ) const
  156. {
  157. cerr << "this are COLOR Features, they won't work on gray value images" << endl;
  158. exit( -1 );
  159. }
  160. int LFColorWeijer::getDescriptors( const NICE::ColorImage & img, VVector & positions, VVector & features ) const
  161. {
  162. // in Lab umwandeln
  163. for ( int i = 0; i < ( int )positions.size(); i++ )
  164. {
  165. vector<double> vals;
  166. vector<int> b;
  167. int x = positions[i][0];
  168. int y = positions[i][1];
  169. double R, G, B, X, Y, Z;
  170. vector<double> lab( 3, 0.0 );
  171. R = ( double )img.getPixel( x, y, 0 ) / 255.0;
  172. G = ( double )img.getPixel( x, y, 1 ) / 255.0;
  173. B = ( double )img.getPixel( x, y, 2 ) / 255.0;
  174. ColorConversion::ccRGBtoXYZ( R, G, B, &X, &Y, &Z, 0 );
  175. ColorConversion::ccXYZtoCIE_Lab( X, Y, Z, &lab[0], &lab[1], &lab[2], 0 );
  176. for ( int i = 0; i < 3; i++ )
  177. {
  178. int val = ( int )(( lab[i] - minv[i] ) / interval[i] );
  179. val = std::min( val, bin[i] - 1 );
  180. val = std::max( val, 0 );
  181. b.push_back( val );
  182. }
  183. Vector feat( hist.size() );
  184. for ( uint i = 0; i < hist.size(); i++ )
  185. {
  186. feat[i] = hist[i][b[0]][b[1]][b[2]];
  187. }
  188. features.push_back( feat );
  189. }
  190. return 1;
  191. }
  192. void LFColorWeijer::visualizeFeatures( NICE::Image & mark, const VVector & positions, size_t color ) const
  193. {
  194. }
  195. void LFColorWeijer::add( vector<vector<vector<double> > > &dest, vector<vector<vector<double> > > &src )
  196. {
  197. for ( uint i0 = 0; i0 < src.size(); i0++ )
  198. {
  199. for ( uint i1 = 0; i1 < src[i0].size(); i1++ )
  200. {
  201. for ( uint i2 = 0; i2 < src[i0][i1].size(); i2++ )
  202. {
  203. dest[i0][i1][i2] += src[i0][i1][i2];
  204. }
  205. }
  206. }
  207. }
  208. int LFColorWeijer::findColor( string &fn )
  209. {
  210. if ( fn.find( "black" ) != string::npos )
  211. return BLACK;
  212. if ( fn.find( "blue" ) != string::npos )
  213. return BLUE;
  214. if ( fn.find( "brown" ) != string::npos )
  215. return BROWN;
  216. if ( fn.find( "grey" ) != string::npos )
  217. return GREY;
  218. if ( fn.find( "green" ) != string::npos )
  219. return GREEN;
  220. if ( fn.find( "orange" ) != string::npos )
  221. return ORANGE;
  222. if ( fn.find( "pink" ) != string::npos )
  223. return PINK;
  224. if ( fn.find( "purple" ) != string::npos )
  225. return PURPLE;
  226. if ( fn.find( "red" ) != string::npos )
  227. return RED;
  228. if ( fn.find( "white" ) != string::npos )
  229. return WHITE;
  230. if ( fn.find( "yellow" ) != string::npos )
  231. return YELLOW;
  232. return -1;
  233. }
  234. vector<vector<vector<double > > > LFColorWeijer::createTable()
  235. {
  236. vector<vector<vector<double> > > h;
  237. for ( int i0 = 0; i0 < bin[0]; i0++ )
  238. {
  239. vector<vector< double > > vec;
  240. for ( int i1 = 0; i1 < bin[1]; i1++ )
  241. {
  242. vector<double> v;
  243. for ( int i2 = 0; i2 < bin[2]; i2++ )
  244. {
  245. v.push_back( 0.0 );
  246. }
  247. vec.push_back( v );
  248. }
  249. h.push_back( vec );
  250. }
  251. return h;
  252. }
  253. void LFColorWeijer::normalize( vector<vector<vector<double> > > &tab )
  254. {
  255. double sum = 0.0;
  256. for ( uint i0 = 0; i0 < tab.size(); i0++ )
  257. {
  258. for ( uint i1 = 0; i1 < tab[i0].size(); i1++ )
  259. {
  260. for ( uint i2 = 0; i2 < tab[i0][i1].size(); i2++ )
  261. {
  262. sum += tab[i0][i1][i2];
  263. }
  264. }
  265. }
  266. for ( uint i0 = 0; i0 < tab.size(); i0++ )
  267. {
  268. for ( uint i1 = 0; i1 < tab[i0].size(); i1++ )
  269. {
  270. for ( uint i2 = 0; i2 < tab[i0][i1].size(); i2++ )
  271. {
  272. tab[i0][i1][i2] /= sum;
  273. }
  274. }
  275. }
  276. return;
  277. }
  278. void LFColorWeijer::createHist( const ColorImage &cimg, vector<vector<vector<double> > > &hist, Image &mask )
  279. {
  280. // in Lab umwandeln
  281. NICE::MultiChannelImageT<double> genimg, imglab;
  282. ColorSpace::ColorImagetoMultiChannelImage( cimg, genimg );
  283. ColorSpace::convert( imglab, genimg, ColorSpace::COLORSPACE_LAB, ColorSpace::COLORSPACE_RGB );
  284. for ( int y = 0; y < cimg.height(); y++ )
  285. {
  286. for ( int x = 0; x < cimg.width(); x++ )
  287. {
  288. if ( mask.getPixel( x, y ) == 0 )
  289. continue;
  290. vector<int> b;
  291. for ( int i = 0; i < 3; i++ )
  292. {
  293. int val = ( int )(( imglab.get( x, y, i ) - minv[i] ) / interval[i] );
  294. val = std::min( val, bin[i] - 1 );
  295. b.push_back( val );
  296. }
  297. hist[b[0]][b[1]][b[2]]++;
  298. }
  299. }
  300. }
  301. void LFColorWeijer::train()
  302. {
  303. cout << "train Starts" << endl;
  304. for ( int i = 0; i < LASTCOLOR; i++ )
  305. {
  306. vector<vector<vector<double> > > h = createTable();
  307. hist.push_back( h );
  308. }
  309. string dir = conf->gS( "LFColorWeijer", "table", "/home/dbv/bilder/colorWeijer/ebay/" );
  310. string images = conf->gS( "LFColorWeijer", "table", "test_images.txt" );
  311. string mask = conf->gS( "LFColorWeijer", "table", "mask_images.txt" );
  312. string imagesfn;
  313. string maskfn;
  314. ifstream finimg(( dir + images ).c_str() );
  315. ifstream finmask(( dir + mask ).c_str() );
  316. cout << dir + images << endl;
  317. cout << dir + mask << endl;
  318. // lese bilder und masken ein
  319. while ( finimg >> imagesfn && finmask >> maskfn )
  320. {
  321. Image mimg( dir + maskfn );
  322. cout << dir + maskfn << endl;
  323. ColorImage cimg( dir + imagesfn );
  324. int col = findColor( imagesfn );
  325. vector<vector<vector<double> > > tab = createTable();
  326. createHist( cimg, tab, mimg ); // erzeuge Lab Histogramm des Bildes
  327. normalize( tab );
  328. add( hist[col], tab );
  329. }
  330. finimg.close();
  331. finmask.close();
  332. // normalisiere alle lookuptables
  333. for ( uint i = 0; i < hist.size(); i++ )
  334. {
  335. normalize( hist[i] );
  336. }
  337. smooth();
  338. store();
  339. }
  340. void LFColorWeijer::visualizeFeatures( NICE::ColorImage & out, const VVector & features, const VVector & position ) const
  341. {
  342. for ( int i = 0; i < ( int )position.size(); i++ )
  343. {
  344. int maxpos = 0;
  345. double maxval = 0.0;
  346. for ( int j = 0; j < ( int )features[i].size(); j++ )
  347. {
  348. if ( maxval < features[i][j] )
  349. {
  350. maxval = features[i][j];
  351. maxpos = j;
  352. }
  353. }
  354. out.setPixel( position[i][0], position[i][1], colors[maxpos][0], colors[maxpos][1], colors[maxpos][2] );
  355. }
  356. }
  357. void LFColorWeijer::visualizeFeatures( const NICE::ColorImage & cimg ) const
  358. {
  359. ColorImage out;
  360. visualizeFeatures( cimg, out );
  361. }
  362. void LFColorWeijer::visualizeFeatures( const NICE::ColorImage & cimg, NICE::ColorImage &out ) const
  363. {
  364. VVector pos, feats;
  365. for ( int y = 0; y < cimg.height(); y++ )
  366. {
  367. for ( int x = 0; x < cimg.width(); x++ )
  368. {
  369. Vector vec( 2 );
  370. vec[0] = x;
  371. vec[1] = y;
  372. pos.push_back( vec );
  373. }
  374. }
  375. getDescriptors( cimg, pos, feats );
  376. //heatmap for a special class
  377. /*ofstream fout("out.txt");
  378. int counter = 0;
  379. for ( int y = 0; y < cimg.height(); y++ )
  380. {
  381. for ( int x = 0; x < cimg.width(); x++, counter++ )
  382. {
  383. fout << feats[counter][8] << " ";
  384. }
  385. }
  386. cout << "counter: " << counter << " feats.size(): " << feats.size() << endl;
  387. fout.close();*/
  388. out.resize( cimg.width(), cimg.height() );
  389. out.set( 0, 0, 0 );
  390. visualizeFeatures( out, feats, pos );
  391. ColorImage combinedout( cimg.width()*2, cimg.height() );
  392. int width = ( int )cimg.width();
  393. for ( int y = 0; y < ( int )cimg.height(); y++ )
  394. {
  395. for ( int x = 0; x < width; x++ )
  396. {
  397. combinedout.setPixel( x, y, cimg.getPixel( x, y, 0 ), cimg.getPixel( x, y, 1 ), cimg.getPixel( x, y, 2 ) );
  398. combinedout.setPixel( x + width, y, out.getPixel( x, y, 0 ), out.getPixel( x, y, 1 ), out.getPixel( x, y, 2 ) );
  399. }
  400. }
  401. showImage( combinedout, "result" );
  402. }
  403. void LFColorWeijer::getFeats( const ColorImage &img, MultiChannelImageT<double> &feats )
  404. {
  405. int width = ( int )img.width();
  406. int height = ( int )img.height();
  407. feats.reInit( width, height, hist.size());
  408. NICE::MultiChannelImageT<double> genimg, imglab;
  409. ColorSpace::ColorImagetoMultiChannelImage( img, genimg );
  410. ColorSpace::convert( imglab, genimg, ColorSpace::COLORSPACE_LAB, ColorSpace::COLORSPACE_RGB );
  411. for ( int y = 0; y < height; y++ )
  412. {
  413. for ( int x = 0; x < width; x++ )
  414. {
  415. for ( uint i = 0; i < hist.size(); i++ )
  416. {
  417. vector<double> b( 3, 0.0 );
  418. for ( int j = 0; j < 3; j++ )
  419. {
  420. int val = ( int )(( imglab.get( x, y, j ) - minv[j] ) / interval[j] );
  421. val = std::min( val, bin[j] - 1 );
  422. val = std::max( val, 0 );
  423. b[j] = val;
  424. }
  425. feats.set( x, y, hist[i][b[0]][b[1]][b[2]], i );
  426. }
  427. }
  428. }
  429. return;
  430. }