123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- /**
- * @file evaluateCompleteBoWPipeline.cpp
- * @brief A complete BoW pipeline: feature extraction, codebook creation, vector quantization, classifier training, evaluation on separate test set
- * @author Alexander Freytag
- * @date 10-05-2013
- */
- //STL
- #include <iostream>
- #include <limits>
- //core -- basic stuff
- #include <core/basics/Config.h>
- #include <core/basics/ResourceStatistics.h>
- #include <core/basics/Timer.h>
- #include <core/image/Convert.h>
- #include <core/vector/VectorT.h>
- //vislearning -- basic stuff
- #include <vislearning/baselib/Globals.h>
- #include <vislearning/baselib/ICETools.h>
- #include <vislearning/baselib/ProgressBar.h>
- #include <vislearning/cbaselib/MultiDataset.h>
- #include <vislearning/cbaselib/Example.h>
- #include <vislearning/cbaselib/ClassificationResult.h>
- #include <vislearning/cbaselib/ClassificationResults.h>
- //
- // vislearning -- classifier
- #include <vislearning/classifier/classifierbase/VecClassifier.h>
- #include <vislearning/classifier/genericClassifierSelection.h>
- //
- // vislearning -- BoW codebooks
- #include "vislearning/features/simplefeatures/CodebookPrototypes.h"
- #include "vislearning/features/simplefeatures/BoWFeatureConverter.h"
- //
- // vislearning -- local features
- #include <vislearning/features/localfeatures/GenericLFSelection.h>
- //
- // vislearning -- clustering methods
- #include <vislearning/math/cluster/GenericClusterAlgorithmSelection.h>
- //
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- /**
- a complete BoW pipeline
- possibly, we can make use of objrec/progs/testClassifier.cpp
- */
- int main( int argc, char **argv )
- {
- #ifdef __GLIBCXX__
- std::set_terminate( __gnu_cxx::__verbose_terminate_handler );
- #endif
- Config * conf = new Config ( argc, argv );
- const bool writeClassificationResults = conf->gB( "main", "writeClassificationResults", true );
- const std::string resultsfile = conf->gS( "main", "resultsfile", "/tmp/results.txt" );
- ResourceStatistics rs;
- // ========================================================================
- // TRAINING STEP
- // ========================================================================
- MultiDataset md( conf );
- const LabeledSet *trainFiles = md["train"];
- //**********************************************
- //
- // FEATURE EXTRACTION FOR TRAINING IMAGES
- //
- //**********************************************
- std::cerr << "FEATURE EXTRACTION FOR TRAINING IMAGES" << std::endl;
- OBJREC::LocalFeatureRepresentation * featureExtractor = OBJREC::GenericLFSelection::selectLocalFeatureRep ( conf, "features", OBJREC::GenericLFSelection::TRAINING );
- //collect features in a single data structure
- NICE::VVector featuresFromAllTrainingImages;
- featuresFromAllTrainingImages.clear();
- //determine how many training images we actually use to easily allocate the correct amount of memory afterwards
- int numberOfTrainingImages ( 0 );
- for(LabeledSet::const_iterator classIt = trainFiles->begin() ; classIt != trainFiles->end() ; classIt++)
- {
- numberOfTrainingImages += classIt->second.size();
- std::cerr << "number of examples for this class: " << classIt->second.size() << std::endl;
- }
- //okay, this is redundant - but I see no way to do it more easy right now...
- std::vector<NICE::VVector> featuresOfImages ( numberOfTrainingImages );
- //this again is somehow redundant, but we need the labels lateron for easy access - change this to a better solution :)
- NICE::VectorT<int> labelsTrain ( numberOfTrainingImages, 0 );
- int imgCnt ( 0 );
- // the corresponding nasty makro: LOOP_ALL_S( *trainFiles )
- for(LabeledSet::const_iterator classIt = trainFiles->begin() ; classIt != trainFiles->end() ; classIt++)
- {
- for ( std::vector<ImageInfo *>::const_iterator imgIt = classIt->second.begin();
- imgIt != classIt->second.end();
- imgIt++, imgCnt++
- )
- {
- // the corresponding nasty makro: EACH_INFO( classno, info );
- int classno ( classIt->first );
- const ImageInfo imgInfo = *(*imgIt);
- std::string filename = imgInfo.img();
- NICE::ColorImage img( filename );
- //compute features
- //variables to store feature information
- NICE::VVector features;
- NICE::VVector positions;
- Globals::setCurrentImgFN ( filename );
- featureExtractor->extractFeatures ( img, features, positions );
- //normalization :)
- for ( NICE::VVector::iterator i = features.begin();
- i != features.end();
- i++)
- {
- i->normalizeL1();
- }
- //collect them all in a larger data structure
- featuresFromAllTrainingImages.append( features );
- //and store it as well in the data struct that additionally keeps the information which features belong to which image
- //TODO this can be made more clever!
- // featuresOfImages.push_back( features );
- featuresOfImages[imgCnt] = features;
- labelsTrain[imgCnt] = classno;
- }
- }
- //**********************************************
- //
- // CODEBOOK CREATION
- //
- //**********************************************
- std::cerr << "CODEBOOK CREATION" << std::endl;
- OBJREC::ClusterAlgorithm * clusterAlgo = OBJREC::GenericClusterAlgorithmSelection::selectClusterAlgorithm ( conf );
- NICE::VVector prototypes;
- std::vector<double> weights;
- std::vector<int> assignments;
- std::cerr << "call cluster of cluster algo " << std::endl;
- clusterAlgo->cluster( featuresFromAllTrainingImages, prototypes, weights, assignments );
- std::cerr << "create new codebook with the computed prototypes" << std::endl;
- OBJREC::CodebookPrototypes * codebook = new OBJREC::CodebookPrototypes ( prototypes );
- //**********************************************
- //
- // VECTOR QUANTIZATION OF
- // FEATURES OF TRAINING IMAGES
- //
- //**********************************************
- OBJREC::BoWFeatureConverter * bowConverter = new OBJREC::BoWFeatureConverter ( conf, codebook );
- OBJREC::LabeledSetVector trainSet;
- NICE::VVector histograms ( featuresOfImages.size() /* number of vectors*/, 0 /* dimension of vectors*/ ); //the internal vectors will be resized within calcHistogram
- NICE::VVector::iterator histogramIt = histograms.begin();
- NICE::VectorT<int>::const_iterator labelsIt = labelsTrain.begin();
- for (std::vector<NICE::VVector>::const_iterator imgIt = featuresOfImages.begin(); imgIt != featuresOfImages.end(); imgIt++, histogramIt++, labelsIt++)
- {
- bowConverter->calcHistogram ( *imgIt, *histogramIt );
- bowConverter->normalizeHistogram ( *histogramIt );
- //NOTE perhaps we should use add_reference here
- trainSet.add( *labelsIt, *histogramIt );
- }
- //**********************************************
- //
- // CLASSIFIER TRAINING
- //
- //**********************************************
- std::string classifierType = conf->gS( "main", "classifierType", "GPHIK" );
- OBJREC::VecClassifier * classifier = OBJREC::GenericClassifierSelection::selectVecClassifier( conf, classifierType );
- //this method adds the training data to the temporary knowledge of our classifier
- classifier->teach( trainSet );
- //now the actual training step starts (e.g., parameter estimation, ... )
- classifier->finishTeaching();
- // ========================================================================
- // TEST STEP
- // ========================================================================
- const LabeledSet *testFiles = md["test"];
- delete featureExtractor;
- featureExtractor = OBJREC::GenericLFSelection::selectLocalFeatureRep ( conf, "features", OBJREC::GenericLFSelection::TESTING );
- NICE::Matrix confusionMat ( testFiles->size() /* number of classes for testing*/, trainFiles->size() /* number of classes in training */, 0.0 );
- NICE::Timer t;
- ClassificationResults results;
- ProgressBar pbClasses;
- // the corresponding nasty makro: LOOP_ALL_S( *testFiles )
- for(LabeledSet::const_iterator classIt = testFiles->begin() ; classIt != testFiles->end() ; classIt++)
- {
- std::cerr <<" \n\nOverall update bar: " << std::endl;
- pbClasses.update ( testFiles->size() );
- std::cerr << "\nStart next class " << std::endl;
- ProgressBar pbClassExamples;
- for ( std::vector<ImageInfo *>::const_iterator imgIt = classIt->second.begin();
- imgIt != classIt->second.end();
- imgIt++, imgCnt++
- )
- {
- pbClassExamples.update ( classIt->second.size() );
- // the corresponding nasty makro: EACH_INFO( classno, info );
- int classno ( classIt->first );
- const ImageInfo imgInfo = *(*imgIt);
- std::string filename = imgInfo.img();
- //**********************************************
- //
- // FEATURE EXTRACTION FOR TEST IMAGES
- //
- //**********************************************
- NICE::ColorImage img( filename );
- //compute features
- //variables to store feature information
- NICE::VVector features;
- NICE::VVector positions;
- Globals::setCurrentImgFN ( filename );
- featureExtractor->extractFeatures ( img, features, positions );
- //normalization :)
- for ( NICE::VVector::iterator i = features.begin();
- i != features.end();
- i++)
- {
- i->normalizeL1();
- }
- //**********************************************
- //
- // VECTOR QUANTIZATION OF
- // FEATURES OF TEST IMAGES
- //
- //**********************************************
- NICE::Vector histogramOfCurrentImg;
- bowConverter->calcHistogram ( features, histogramOfCurrentImg );
- bowConverter->normalizeHistogram ( histogramOfCurrentImg );
- //**********************************************
- //
- // CLASSIFIER EVALUATION
- //
- //**********************************************
- uint classno_groundtruth = classno;
- t.start();
- ClassificationResult r = classifier->classify ( histogramOfCurrentImg );
- t.stop();
- uint classno_estimated = r.classno;
- r.classno_groundtruth = classno_groundtruth;
- //if we like to store the classification results for external post processing, uncomment this
- if ( writeClassificationResults )
- {
- results.push_back( r );
- }
- confusionMat( classno_groundtruth, classno_estimated ) += 1;
- }
- }
- confusionMat.normalizeRowsL1();
- std::cerr << confusionMat << std::endl;
- std::cerr << "average recognition rate: " << confusionMat.trace()/confusionMat.rows() << std::endl;
- if ( writeClassificationResults )
- {
- double avgRecogResults ( results.getAverageRecognitionRate () );
- std::cerr << "average recognition rate according to classificationResults: " << avgRecogResults << std::endl;
- results.writeWEKA ( resultsfile, 0 );
- }
- return 0;
- }
|