123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- /**
- * @file LinRegression.cpp
- * @brief Algorithm for linear regression
- * @author Frank Prüfer
- * @date 08/13/2013
- */
- #include "vislearning/regression/linregression/LinRegression.h"
- #include "core/vector/Algorithms.h"
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- LinRegression::LinRegression(){
- dim = 0;
- }
- LinRegression::LinRegression(uint dimension){
- dim = dimension;
- }
- LinRegression::LinRegression ( const LinRegression & src ) :
- RegressionAlgorithm ( src )
- {
- dim = src.dim;
- }
- LinRegression::~LinRegression()
- {
- }
- void LinRegression::teach ( const NICE::VVector & x, const NICE::Vector & y ){
-
- if (dim == 0){ //dimension not specified via constructor
- dim = x[0].size()+1; //use full dimension of data
- }
-
- cerr<<"dim: "<<dim<<endl;
- cerr<<"examples: "<<x.size()<<endl;
-
- for ( uint i = 0;i < dim;i++ ){ //initialize vector of model parameters
- modelParams.push_back(0.0);
- }
-
- if ( dim == 2 ){ //two-dimensional least squares
- double meanX;
- double meanY = y.Mean();
- double sumX = 0.0;
-
- for ( uint i = 0;i < x.size();i++ ){
- sumX += x[i][0];
- }
- meanX = sumX / (double)x.size();
-
-
- for ( uint i = 0; i < x.size(); i++ ){
- modelParams[1] += x[i][0] * y[i];
- }
-
- modelParams[1] -= x.size() * meanX * meanY;
-
- double tmp = 0.0;
- for ( uint i = 0; i < x.size(); i++ ){
- tmp += x[i][0] * x[i][0];
- }
- tmp -= x.size() * meanX * meanX;
-
- modelParams[1] /= tmp;
-
- modelParams[0] = meanY - modelParams[1] * meanX;
- }
- else { //N-dimensional least squares
- NICE::Matrix X, tmp, G;
- NICE::Vector params;
-
- x.toMatrix(X);
-
- NICE::Matrix Xtmp(X.rows(),X.cols()+1,1.0);
-
- // attach front column with ones
- for(uint row = 0;row<X.rows();row++){
- for(uint col = 0;col<X.cols();col++){
- Xtmp(row,col+1) = X(row,col);
- }
- }
- // modelParams =(X'X)^-1 * X'y
- NICE::Matrix tmpInv;
- NICE::Vector rhs;
-
- rhs.multiply(Xtmp,y,true);
-
- tmp.multiply(Xtmp,Xtmp,true);
-
- choleskyDecomp(tmp,G);
- choleskyInvert(G,tmpInv);
-
- params.multiply(tmpInv,rhs);
- modelParams = params.std_vector();
- }
- }
- std::vector<double> LinRegression::getModelParams(){
- return modelParams;
- }
- double LinRegression::predict ( const NICE::Vector & x ){
- double y;
- if ( dim == 2 ){ //two-dimensional least squares
- y = modelParams[0] + modelParams[1] * x[0];
- }
- else {
- // y = x * modelParams
- NICE::Vector nModel(modelParams);
- NICE:: Vector xTmp(1,1.0);
- xTmp.append(x);
- y = xTmp.scalarProduct(nModel);
- }
-
- return y;
- }
|