DTBOblique.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. /**
  2. * @file DTBOblique.cpp
  3. * @brief random oblique decision tree
  4. * @author Sven Sickert
  5. * @date 10/15/2014
  6. */
  7. #include <iostream>
  8. #include <time.h>
  9. #include "DTBOblique.h"
  10. #include "vislearning/features/fpfeatures/ConvolutionFeature.h"
  11. #include "core/vector/Algorithms.h"
  12. using namespace OBJREC;
  13. #define DEBUGTREE
  14. using namespace std;
  15. using namespace NICE;
  16. DTBOblique::DTBOblique ( const Config *conf, string section )
  17. {
  18. saveIndices = conf->gB( section, "save_indices", false);
  19. useShannonEntropy = conf->gB( section, "use_shannon_entropy", false );
  20. useOneVsOne = conf->gB( section, "use_one_vs_one", false );
  21. splitSteps = conf->gI( section, "split_steps", 20 );
  22. maxDepth = conf->gI( section, "max_depth", 10 );
  23. minExamples = conf->gI( section, "min_examples", 50);
  24. regularizationType = conf->gI( section, "regularization_type", 1 );
  25. minimumEntropy = conf->gD( section, "minimum_entropy", 10e-5 );
  26. minimumInformationGain = conf->gD( section, "minimum_information_gain", 10e-7 );
  27. lambdaInit = conf->gD( section, "lambda_init", 0.5 );
  28. }
  29. DTBOblique::~DTBOblique()
  30. {
  31. }
  32. bool DTBOblique::entropyLeftRight (
  33. const FeatureValuesUnsorted & values,
  34. double threshold,
  35. double* stat_left,
  36. double* stat_right,
  37. double & entropy_left,
  38. double & entropy_right,
  39. double & count_left,
  40. double & count_right,
  41. int maxClassNo )
  42. {
  43. count_left = 0;
  44. count_right = 0;
  45. for ( FeatureValuesUnsorted::const_iterator i = values.begin();
  46. i != values.end();
  47. i++ )
  48. {
  49. int classno = i->second;
  50. double value = i->first;
  51. if ( value < threshold ) {
  52. stat_left[classno] += i->fourth;
  53. count_left+=i->fourth;
  54. }
  55. else
  56. {
  57. stat_right[classno] += i->fourth;
  58. count_right+=i->fourth;
  59. }
  60. }
  61. if ( (count_left == 0) || (count_right == 0) )
  62. return false;
  63. entropy_left = 0.0;
  64. for ( int j = 0 ; j <= maxClassNo ; j++ )
  65. if ( stat_left[j] != 0 )
  66. entropy_left -= stat_left[j] * log(stat_left[j]);
  67. entropy_left /= count_left;
  68. entropy_left += log(count_left);
  69. entropy_right = 0.0;
  70. for ( int j = 0 ; j <= maxClassNo ; j++ )
  71. if ( stat_right[j] != 0 )
  72. entropy_right -= stat_right[j] * log(stat_right[j]);
  73. entropy_right /= count_right;
  74. entropy_right += log (count_right);
  75. return true;
  76. }
  77. /** refresh data matrix X and label vector y */
  78. void DTBOblique::getDataAndLabel(
  79. const FeaturePool &fp,
  80. const Examples &examples,
  81. const std::vector<int> &examples_selection,
  82. NICE::Matrix & matX,
  83. NICE::Vector & vecY )
  84. {
  85. ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
  86. int amountParams = f->getParameterLength();
  87. int amountExamples = examples_selection.size();
  88. NICE::Matrix X(amountExamples, amountParams, 0.0 );
  89. NICE::Vector y(amountExamples, 0.0);
  90. int matIndex = 0;
  91. for ( vector<int>::const_iterator si = examples_selection.begin();
  92. si != examples_selection.end();
  93. si++ )
  94. {
  95. const pair<int, Example> & p = examples[*si];
  96. const Example & ce = p.second;
  97. NICE::Vector pixelRepr = f->getFeatureVector( &ce );
  98. double label = p.first * ce.weight;
  99. pixelRepr *= ce.weight;
  100. y.set( matIndex, label );
  101. X.setRow(matIndex,pixelRepr);
  102. matIndex++;
  103. }
  104. matX = X;
  105. vecY = y;
  106. }
  107. void DTBOblique::regularizeDataMatrix(
  108. const NICE::Matrix &X,
  109. NICE::Matrix &XTXreg,
  110. const int regOption,
  111. const double lambda )
  112. {
  113. XTXreg = X.transpose()*X;
  114. NICE::Matrix R;
  115. const int dim = X.cols();
  116. switch (regOption)
  117. {
  118. // identity matrix
  119. case 0:
  120. R.resize(dim,dim);
  121. R.setIdentity();
  122. R *= lambda;
  123. XTXreg += R;
  124. break;
  125. // differences operator, k=1
  126. case 1:
  127. R.resize(dim-1,dim);
  128. R.set( 0.0 );
  129. for ( int r = 0; r < dim-1; r++ )
  130. {
  131. R(r,r) = 1.0;
  132. R(r,r+1) = -1.0;
  133. }
  134. R = R.transpose()*R;
  135. R *= lambda;
  136. XTXreg += R;
  137. break;
  138. // difference operator, k=2
  139. case 2:
  140. R.resize(dim-2,dim);
  141. R.set( 0.0 );
  142. for ( int r = 0; r < dim-2; r++ )
  143. {
  144. R(r,r) = 1.0;
  145. R(r,r+1) = -2.0;
  146. R(r,r+2) = 1.0;
  147. }
  148. R = R.transpose()*R;
  149. R *= lambda;
  150. XTXreg += R;
  151. break;
  152. // as in [Chen et al., 2012]
  153. case 3:
  154. {
  155. NICE::Vector q ( dim, (1.0-lambda) );
  156. q[0] = 1;
  157. NICE::Matrix Q;
  158. Q.tensorProduct(q,q);
  159. R.multiply(XTXreg,Q);
  160. for ( int r = 0; r < dim; r++ )
  161. R(r,r) = q[r] * XTXreg(r,r);
  162. XTXreg = R;
  163. break;
  164. }
  165. // no regularization
  166. default:
  167. std::cerr << "DTBOblique::regularizeDataMatrix: No regularization applied!"
  168. << std::endl;
  169. break;
  170. }
  171. }
  172. void DTBOblique::findBestSplitThreshold (
  173. FeatureValuesUnsorted &values,
  174. SplitInfo &bestSplitInfo,
  175. const NICE::Vector &beta,
  176. const double &e,
  177. const int &maxClassNo )
  178. {
  179. double *distribution_left = new double [maxClassNo+1];
  180. double *distribution_right = new double [maxClassNo+1];
  181. double minValue = (min_element ( values.begin(), values.end() ))->first;
  182. double maxValue = (max_element ( values.begin(), values.end() ))->first;
  183. if ( maxValue - minValue < 1e-7 )
  184. std::cerr << "DTBOblique: Difference between min and max of features values to small!"
  185. << " [" << minValue << "," << maxValue << "]" << std::endl;
  186. // get best thresholds using complete search
  187. for ( int i = 0; i < splitSteps; i++ )
  188. {
  189. double threshold = (i * (maxValue - minValue ) / (double)splitSteps)
  190. + minValue;
  191. // preparations
  192. double el, er;
  193. for ( int k = 0 ; k <= maxClassNo ; k++ )
  194. {
  195. distribution_left[k] = 0.0;
  196. distribution_right[k] = 0.0;
  197. }
  198. /** Test the current split */
  199. // Does another split make sense?
  200. double count_left;
  201. double count_right;
  202. if ( ! entropyLeftRight ( values, threshold,
  203. distribution_left, distribution_right,
  204. el, er, count_left, count_right, maxClassNo ) )
  205. continue;
  206. // information gain and entropy
  207. double pl = (count_left) / (count_left + count_right);
  208. double ig = e - pl*el - (1-pl)*er;
  209. if ( useShannonEntropy )
  210. {
  211. double esplit = - ( pl*log(pl) + (1-pl)*log(1-pl) );
  212. ig = 2*ig / ( e + esplit );
  213. }
  214. if ( ig > bestSplitInfo.informationGain )
  215. {
  216. bestSplitInfo.informationGain = ig;
  217. bestSplitInfo.threshold = threshold;
  218. bestSplitInfo.params = beta;
  219. for ( int k = 0 ; k <= maxClassNo ; k++ )
  220. {
  221. bestSplitInfo.distLeft[k] = distribution_left[k];
  222. bestSplitInfo.distRight[k] = distribution_right[k];
  223. }
  224. bestSplitInfo.entropyLeft = el;
  225. bestSplitInfo.entropyRight = er;
  226. }
  227. }
  228. //cleaning up
  229. delete [] distribution_left;
  230. delete [] distribution_right;
  231. }
  232. /** recursive building method */
  233. DecisionNode *DTBOblique::buildRecursive(
  234. const FeaturePool & fp,
  235. const Examples & examples,
  236. std::vector<int> & examples_selection,
  237. FullVector & distribution,
  238. double e,
  239. int maxClassNo,
  240. int depth,
  241. double lambdaCurrent )
  242. {
  243. #ifdef DEBUGTREE
  244. std::cerr << "DTBOblique: Examples: " << (int)examples_selection.size()
  245. << ", Depth: " << (int)depth << ", Entropy: " << e << std::endl;
  246. #endif
  247. // initialize new node
  248. DecisionNode *node = new DecisionNode ();
  249. node->distribution = distribution;
  250. // stop criteria: maxDepth, minExamples, min_entropy
  251. if ( ( e <= minimumEntropy )
  252. || ( (int)examples_selection.size() < minExamples )
  253. || ( depth > maxDepth ) )
  254. {
  255. #ifdef DEBUGTREE
  256. std::cerr << "DTBOblique: Stopping criteria applied!" << std::endl;
  257. #endif
  258. node->trainExamplesIndices = examples_selection;
  259. return node;
  260. }
  261. // variables
  262. FeatureValuesUnsorted values;
  263. SplitInfo bestSplitInfo;
  264. bestSplitInfo.threshold = 0.0;
  265. bestSplitInfo.informationGain = -1.0;
  266. bestSplitInfo.distLeft = new double [maxClassNo+1];
  267. bestSplitInfo.distRight = new double [maxClassNo+1];
  268. bestSplitInfo.entropyLeft = 0.0;
  269. bestSplitInfo.entropyRight = 0.0;
  270. // double best_threshold = 0.0;
  271. // double best_ig = -1.0;
  272. // double *best_distribution_left = new double [maxClassNo+1];
  273. // double *best_distribution_right = new double [maxClassNo+1];
  274. // double best_entropy_left = 0.0;
  275. // double best_entropy_right = 0.0;
  276. ConvolutionFeature *f = (ConvolutionFeature*)fp.begin()->second;
  277. bestSplitInfo.params = f->getParameterVector();
  278. // Creating data matrix X and label vector y
  279. NICE::Matrix X, XTXr, G, temp;
  280. NICE::Vector y, beta;
  281. getDataAndLabel( fp, examples, examples_selection, X, y );
  282. // Preparing system of linear equations
  283. regularizeDataMatrix( X, XTXr, regularizationType, lambdaCurrent );
  284. choleskyDecomp(XTXr, G);
  285. choleskyInvert(G, XTXr);
  286. temp = XTXr * X.transpose();
  287. if ( useOneVsOne )
  288. {
  289. // One-vs-one: Transforming into {-1,0,+1} problem
  290. for ( int curClass = 0; curClass <= maxClassNo; curClass++ )
  291. for ( int opClass = 0; opClass <= maxClassNo; opClass++ )
  292. {
  293. if ( curClass == opClass ) continue;
  294. NICE::Vector yCur ( y.size(), 0.0 );
  295. int idx = 0;
  296. bool curHasExamples = false;
  297. bool opHasExamples = false;
  298. for ( vector<int>::const_iterator si = examples_selection.begin();
  299. si != examples_selection.end();
  300. si++, idx++ )
  301. {
  302. const pair<int, Example> & p = examples[*si];
  303. if ( p.first == curClass )
  304. {
  305. yCur.set( idx, 1.0 );
  306. curHasExamples = true;
  307. }
  308. else if ( p.first == opClass )
  309. {
  310. yCur.set( idx, -1.0 );
  311. opHasExamples = true;
  312. }
  313. }
  314. // are there positive examples for current and opposition class in current set?
  315. if ( !curHasExamples || !opHasExamples ) continue;
  316. // Solve system of linear equations in a least squares manner
  317. beta.multiply(temp,yCur,false);
  318. // Updating parameter vector in convolutional feature
  319. f->setParameterVector( beta );
  320. // Feature Values
  321. values.clear();
  322. f->calcFeatureValues( examples, examples_selection, values);
  323. // complete search for threshold
  324. findBestSplitThreshold ( values, bestSplitInfo, beta, e,
  325. maxClassNo );
  326. }
  327. }
  328. else
  329. {
  330. // One-vs-all: Transforming into {-1,+1} problem
  331. for ( int curClass = 0; curClass <= maxClassNo; curClass++ )
  332. {
  333. NICE::Vector yCur ( y.size(), -1.0 );
  334. int idx = 0;
  335. bool hasExamples = false;
  336. for ( vector<int>::const_iterator si = examples_selection.begin();
  337. si != examples_selection.end();
  338. si++, idx++ )
  339. {
  340. const pair<int, Example> & p = examples[*si];
  341. if ( p.first == curClass )
  342. {
  343. yCur.set( idx, 1.0 );
  344. hasExamples = true;
  345. }
  346. }
  347. // is there a positive example for current class in current set?
  348. if (!hasExamples) continue;
  349. // Solve system of linear equations in a least squares manner
  350. beta.multiply(temp,yCur,false);
  351. // Updating parameter vector in convolutional feature
  352. f->setParameterVector( beta );
  353. // Feature Values
  354. values.clear();
  355. f->calcFeatureValues( examples, examples_selection, values);
  356. // complete search for threshold
  357. findBestSplitThreshold ( values, bestSplitInfo, beta, e, maxClassNo );
  358. }
  359. }
  360. // supress strange behaviour for values near zero (8.88178e-16)
  361. if (bestSplitInfo.entropyLeft < 1.0e-10 ) bestSplitInfo.entropyLeft = 0.0;
  362. if (bestSplitInfo.entropyRight < 1.0e-10 ) bestSplitInfo.entropyRight = 0.0;
  363. // stop criteria: minimum information gain
  364. if ( bestSplitInfo.informationGain < minimumInformationGain )
  365. {
  366. #ifdef DEBUGTREE
  367. std::cerr << "DTBOblique: Minimum information gain reached!" << std::endl;
  368. #endif
  369. delete [] bestSplitInfo.distLeft;
  370. delete [] bestSplitInfo.distRight;
  371. node->trainExamplesIndices = examples_selection;
  372. return node;
  373. }
  374. /** Save the best split to current node */
  375. f->setParameterVector( bestSplitInfo.params );
  376. values.clear();
  377. f->calcFeatureValues( examples, examples_selection, values);
  378. node->f = f->clone();
  379. node->threshold = bestSplitInfo.threshold;
  380. /** Split examples according to best split function */
  381. vector<int> examples_left;
  382. vector<int> examples_right;
  383. examples_left.reserve ( values.size() / 2 );
  384. examples_right.reserve ( values.size() / 2 );
  385. for ( FeatureValuesUnsorted::const_iterator i = values.begin();
  386. i != values.end(); i++ )
  387. {
  388. double value = i->first;
  389. if ( value < bestSplitInfo.threshold )
  390. examples_left.push_back ( i->third );
  391. else
  392. examples_right.push_back ( i->third );
  393. }
  394. #ifdef DEBUGTREE
  395. node->f->store( std::cerr );
  396. std::cerr << std::endl;
  397. std::cerr << "DTBOblique: Information Gain: " << bestSplitInfo.informationGain
  398. << ", Left Entropy: " << bestSplitInfo.entropyLeft << ", Right Entropy: "
  399. << bestSplitInfo.entropyRight << std::endl;
  400. #endif
  401. FullVector distribution_left_sparse ( distribution.size() );
  402. FullVector distribution_right_sparse ( distribution.size() );
  403. for ( int k = 0 ; k <= maxClassNo ; k++ )
  404. {
  405. double l = bestSplitInfo.distLeft[k];
  406. double r = bestSplitInfo.distRight[k];
  407. if ( l != 0 )
  408. distribution_left_sparse[k] = l;
  409. if ( r != 0 )
  410. distribution_right_sparse[k] = r;
  411. #ifdef DEBUGTREE
  412. std::cerr << "DTBOblique: Split of Class " << k << " ("
  413. << l << " <-> " << r << ") " << std::endl;
  414. #endif
  415. }
  416. //TODO
  417. //delete [] best_distribution_left;
  418. //delete [] best_distribution_right;
  419. // update lambda by heuristic [Laptev/Buhmann, 2014]
  420. double lambdaLeft = lambdaCurrent *
  421. pow(((double)examples_selection.size()/(double)examples_left.size()),(2./f->getParameterLength()));
  422. double lambdaRight = lambdaCurrent *
  423. pow(((double)examples_selection.size()/(double)examples_right.size()),(2./f->getParameterLength()));
  424. //#ifdef DEBUGTREE
  425. // std::cerr << "regularization parameter lambda left " << lambdaLeft
  426. // << " right " << lambdaRight << std::endl;
  427. //#endif
  428. /** Recursion */
  429. // left child
  430. node->left = buildRecursive ( fp, examples, examples_left,
  431. distribution_left_sparse, bestSplitInfo.entropyLeft,
  432. maxClassNo, depth+1, lambdaLeft );
  433. // right child
  434. node->right = buildRecursive ( fp, examples, examples_right,
  435. distribution_right_sparse, bestSplitInfo.entropyRight,
  436. maxClassNo, depth+1, lambdaRight );
  437. return node;
  438. }
  439. /** initial building method */
  440. DecisionNode *DTBOblique::build ( const FeaturePool & fp,
  441. const Examples & examples,
  442. int maxClassNo )
  443. {
  444. int index = 0;
  445. FullVector distribution ( maxClassNo+1 );
  446. vector<int> all;
  447. all.reserve ( examples.size() );
  448. for ( Examples::const_iterator j = examples.begin();
  449. j != examples.end(); j++ )
  450. {
  451. int classno = j->first;
  452. distribution[classno] += j->second.weight;
  453. all.push_back ( index );
  454. index++;
  455. }
  456. double entropy = 0.0;
  457. double sum = 0.0;
  458. for ( int i = 0 ; i < distribution.size(); i++ )
  459. {
  460. double val = distribution[i];
  461. if ( val <= 0.0 ) continue;
  462. entropy -= val*log(val);
  463. sum += val;
  464. }
  465. entropy /= sum;
  466. entropy += log(sum);
  467. return buildRecursive ( fp, examples, all, distribution,
  468. entropy, maxClassNo, 0, lambdaInit );
  469. }