12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- /**
- * @file GPRegressionOptimizationProblem.h
- * @author Erik Rodner
- * @date 12/09/2009
- */
- #ifndef _NICE_OBJREC_GPREGRESSIONOPTIMIZATIONPROBLEMINCLUDE
- #define _NICE_OBJREC_GPREGRESSIONOPTIMIZATIONPROBLEMINCLUDE
- #include "core/vector/VVector.h"
- #include "vislearning/math/kernels/ParameterizedKernel.h"
- #include "core/optimization/limun/OptimizationProblemFirst.h"
- #include "vislearning/math/kernels/KernelData.h"
- #include "vislearning/math/kernels/TraceApproximation.h"
- #include "modelselcrit/GPMSCLooEstimates.h"
- namespace OBJREC {
-
- /** @class GPRegressionOptimizationProblem
- * Hyperparameter Optimization Problem for GP Regression
- *
- * @author Erik Rodner
- */
- class GPRegressionOptimizationProblem : public NICE::OptimizationProblemFirst
- {
- protected:
- KernelData *kernelData;
-
- NICE::VVector y;
- double bestAvgLooError;
- NICE::Vector bestLooParameters;
-
- ParameterizedKernel *kernel;
- bool verbose;
- /** An !additional! model selection criterion (e.g. loo), which is used
- * to select parameters from the set of parameters generated during optimization.
- * We restrict ourselves to loo-based model selection criterions because
- * they are easy to compute with matrices and vectors precomputed by
- * this optimization anyway (inverse kernel matrix, cholesky decomp, etc.)
- * Recommendation: give it a try! */
- const GPMSCLooLikelihoodRegression *modelselcrit;
- /** Use this method to set the stochastic trace approximation method,
- * this method is highly instable, but you can try to skip the trace term
- * by setting numTraceSamples to zero, which assumes a constant volume kernel matrix.
- * Recommendation: you shouldn't use this option, unless you like a kind of random search
- * for hyper-parameters. */
- const TraceApproximation *traceApproximation;
-
-
- public:
-
-
- GPRegressionOptimizationProblem ( KernelData *kernelData, const NICE::Vector & y,
- ParameterizedKernel *kernel, bool verbose = false,
- const GPMSCLooLikelihoodRegression *modelselcrit = NULL,
- const TraceApproximation *traceApproximation = NULL );
- GPRegressionOptimizationProblem ( KernelData *kernelData, const NICE::VVector & y,
- ParameterizedKernel *kernel, bool verbose = false,
- const GPMSCLooLikelihoodRegression *modelselcrit = NULL,
- const TraceApproximation *traceApproximation = NULL );
- double computeObjective();
- void computeGradient( NICE::Vector& newGradient );
- void setParameters ( const NICE::Vector & newParameters ) { parameters() = newParameters; };
- void useLooParameters ();
-
- void update();
- };
- }
- #endif
|