LinRegression.cpp 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. /**
  2. * @file LinRegression.cpp
  3. * @brief Algorithm for linear regression
  4. * @author Frank Prüfer
  5. * @date 08/13/2013
  6. */
  7. #include "vislearning/regression/linregression/LinRegression.h"
  8. #include "core/vector/Algorithms.h"
  9. using namespace OBJREC;
  10. using namespace std;
  11. using namespace NICE;
  12. LinRegression::LinRegression(){
  13. dim = 0;
  14. }
  15. LinRegression::LinRegression(uint dimension){
  16. dim = dimension;
  17. }
  18. LinRegression::~LinRegression()
  19. {
  20. }
  21. void LinRegression::teach ( const NICE::VVector & x, const NICE::Vector & y ){
  22. if (dim == 0){ //dimension not specified via constructor
  23. dim = x[0].size()+1; //use full dimension of data
  24. }
  25. cerr<<"dim: "<<dim<<endl;
  26. cerr<<"examples: "<<x.size()<<endl;
  27. for ( uint i = 0;i < dim;i++ ){ //initialize alpha-vector
  28. alpha.push_back(0.0);
  29. }
  30. if ( dim == 2 ){ //two-dimensional least squares
  31. double meanX;
  32. double meanY = y.Mean();
  33. double sumX = 0.0;
  34. for ( uint i = 0;i < x.size();i++ ){
  35. sumX += x[i][0];
  36. }
  37. meanX = sumX / (double)x.size();
  38. for ( uint i = 0; i < x.size(); i++ ){
  39. alpha[1] += x[i][0] * y[i];
  40. }
  41. alpha[1] -= x.size() * meanX * meanY;
  42. double tmpAlpha = 0.0;
  43. for ( uint i = 0; i < x.size(); i++ ){
  44. tmpAlpha += x[i][0] * x[i][0];
  45. }
  46. tmpAlpha -= x.size() * meanX * meanX;
  47. alpha[1] /= tmpAlpha;
  48. alpha[0] = meanY - alpha[1] * meanX;
  49. // cerr<<"Alpha-Vektor: ";
  50. // for(uint i=0;i<alpha.size();i++){
  51. // cerr<<alpha[i]<<" ";
  52. // }
  53. // cerr<<endl;
  54. }
  55. else { //N-dimensional least squares
  56. NICE::Matrix X, tmpAlpha, G;
  57. NICE::Vector params;
  58. x.toMatrix(X);
  59. NICE::Matrix Xtmp(X.rows(),X.cols()+1,1.0);
  60. // attach front column with ones
  61. for(uint row = 0;row<X.rows();row++){
  62. for(uint col = 0;col<X.cols();col++){
  63. Xtmp(row,col+1) = X(row,col);
  64. }
  65. }
  66. // alpha =(X'X)^-1 * X'y
  67. NICE::Matrix tmpAlphaInv;
  68. NICE::Vector rhs;
  69. rhs.multiply(Xtmp,y,true);
  70. tmpAlpha.multiply(Xtmp,Xtmp,true);
  71. choleskyDecomp(tmpAlpha,G);
  72. choleskyInvert(G,tmpAlphaInv);
  73. params.multiply(tmpAlphaInv,rhs);
  74. alpha = params.std_vector();
  75. cerr<<"Alpha-Vektor: ";
  76. for(uint i=0;i<alpha.size();i++){
  77. cerr<<alpha[i]<<" ";
  78. }
  79. cerr<<endl;
  80. }
  81. }
  82. double LinRegression::predict ( const NICE::Vector & x ){
  83. double y;
  84. if ( dim == 2 ){ //two-dimensional least squares
  85. y = alpha[0] + alpha[1] * x[0];
  86. }
  87. else {
  88. // y = x * alpha
  89. NICE::Vector nAlpha(alpha);
  90. NICE:: Vector xTmp(1,1.0);
  91. xTmp.append(x);
  92. y = xTmp.scalarProduct(nAlpha);
  93. }
  94. return y;
  95. }