123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- /**
- * @file KMeans.cpp
- * @brief K-Means
- * @author Erik Rodner, Alexander Freytag
- * @date 29-10-2007 (dd-mm-yyyy)
- */
- #include <iostream>
- #include "vislearning/math/cluster/KMeans.h"
- #include "vislearning/math/distances/genericDistance.h"
- #include <set>
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- #undef DEBUG_KMEANS
- KMeans::KMeans(const int & _noClasses, const std::string & _distanceType) :
- noClasses(_noClasses), distanceType(_distanceType)
- {
- //srand(time(NULL));
- this->distancefunction = GenericDistanceSelection::selectDistance(distanceType);
- }
- KMeans::KMeans( const NICE::Config *conf, const std::string & _section)
- {
- this->distanceType = conf->gS( _section, "distanceType", "euclidean" );
- this->distancefunction = GenericDistanceSelection::selectDistance(distanceType);
-
- this->d_minDelta = conf->gD( _section, "minDelta", 1e-5 );
- this->i_maxIterations = conf->gI( _section, "maxIterations", 200);
-
- this->noClasses = conf->gI( _section, "noClasses", 20);
- }
- KMeans::~KMeans()
- {
- }
- void KMeans::initial_guess(const NICE::VVector & features, NICE::VVector & prototypes)
- {
- int j = 0;
- std::set<int, std::greater<int> > mark;
- for (VVector::iterator i = prototypes.begin(); i != prototypes.end(); i++, j++)
- {
- int k;
- do
- {
- k = rand() % features.size();
- } while (mark.find(k) != mark.end());
- mark.insert(mark.begin(), k);
- *i = features[k];
- }
- }
- int KMeans::compute_prototypes(const VVector & features, VVector & prototypes,
- std::vector<double> & weights, const std::vector<int> & assignment)
- {
- int j = 0;
- // fprintf (stderr, "KMeans::compute_prototypes: init noClasses=%d\n", noClasses);
- for (int k = 0; k < this->noClasses; k++)
- {
- prototypes[k].set(0);
- weights[k] = 0;
- }
- // fprintf (stderr, "KMeans::compute_prototypes: compute means\n");
- for (VVector::const_iterator i = features.begin(); i != features.end(); i++, j++)
- {
- int k = assignment[j];
- NICE::Vector & p = prototypes[k];
- const NICE::Vector & x = *i;
- #ifdef DEBUG_KMEANS
- fprintf(
- stderr,
- "KMeans::compute_prototypes: std::vector %d has assignment %d\n",
- j, k);
- #endif
- p += x;
- #ifdef DEBUG_KMEANS
- std::cerr << "vector was : " << x << std::endl;
- std::cerr << "prototype for this class is now : " << p << std::endl;
- #endif
-
- weights[k]++;
- }
- // fprintf (stderr, "KMeans::compute_prototypes: scaling\n");
- for (int k = 0; k < this->noClasses; k++)
- {
- NICE::Vector & p = prototypes[k];
- #ifdef DEBUG_KMEANS
- std::cerr << "prototype for this class before scaling : " << p << std::endl;
- #endif
- if (weights[k] <= 0)
- {
- return -1;
- }
- p *= (1.0 / weights[k]);
- weights[k] = weights[k] / features.size();
- #ifdef DEBUG_KMEANS
- std::cerr << "prototype for this class after scaling with " << weights[k]
- << " : " << p << std::endl;
- #endif
- }
- return 0;
- }
- double KMeans::compute_delta(const NICE::VVector & oldprototypes,
- const NICE::VVector & prototypes)
- {
- double distance = 0;
- for (uint k = 0; k < oldprototypes.size(); k++)
- {
- distance += this->distancefunction->calculate(oldprototypes[k], prototypes[k]);
-
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "KMeans::compute_delta: Distance: %f",
- distancefunction->calculate(oldprototypes[k], prototypes[k]));
- #endif
- }
- return distance;
- }
- double KMeans::compute_assignments(const NICE::VVector & features,
- const NICE::VVector & prototypes, std::vector<int> & assignment)
- {
- int index = 0;
- for (VVector::const_iterator i = features.begin(); i != features.end(); i++, index++)
- {
- const NICE::Vector & x = *i;
- double mindist = std::numeric_limits<double>::max();
- int minclass = 0;
- int c = 0;
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "computing nearest prototype for std::vector %d\n",
- index);
- #endif
- for (VVector::const_iterator j = prototypes.begin(); j
- != prototypes.end(); j++, c++)
- {
- const NICE::Vector & p = *j;
- double distance = this->distancefunction->calculate(p, x);
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "KMeans::compute_delta: Distance: %f",
- this->distancefunction->calculate(p, x));
- #endif
- #ifdef DEBUG_KMEANS
- std::cerr << p << std::endl;
- std::cerr << x << std::endl;
- fprintf(stderr, "distance to prototype %d is %f\n", c, distance);
- #endif
- if (distance < mindist)
- {
- minclass = c;
- mindist = distance;
- }
- }
- assignment[index] = minclass;
- }
- return 0.0;
- }
- double KMeans::compute_weights(const NICE::VVector & features,
- std::vector<double> & weights, std::vector<int> & assignment)
- {
- for (int k = 0; k < this->noClasses; k++)
- weights[k] = 0;
- int j = 0;
- for (NICE::VVector::const_iterator i = features.begin(); i != features.end(); i++, j++)
- {
- int k = assignment[j];
- weights[k]++;
- }
- for (int k = 0; k < this->noClasses; k++)
- weights[k] = weights[k] / features.size();
- return 0.0;
- }
- void KMeans::cluster(const NICE::VVector & features, NICE::VVector & prototypes,
- std::vector<double> & weights, std::vector<int> & assignment)
- {
- NICE::VVector oldprototypes;
- prototypes.clear();
- weights.clear();
- assignment.clear();
- weights.resize(noClasses, 0);
- assignment.resize(features.size(), 0);
- int dimension;
- if ((int) features.size() >= this->noClasses)
- dimension = features[0].size();
- else
- {
- fprintf(stderr,
- "FATAL ERROR: Not enough feature vectors provided for kMeans\n");
- exit(-1);
- }
- for (int k = 0; k < this->noClasses; k++)
- {
- prototypes.push_back(Vector(dimension));
- prototypes[k].set(0);
- }
- bool successKMeans ( false );
- int iterations ( 0 );
- double delta ( std::numeric_limits<double>::max() );
-
- while ( !successKMeans )
- {
- //we assume that this run will be successful
- successKMeans = true;
- this->initial_guess(features, prototypes);
-
- iterations = 0;
- delta = std::numeric_limits<double>::max();
- do
- {
- iterations++;
- this->compute_assignments(features, prototypes, assignment);
- if (iterations > 1)
- oldprototypes = prototypes;
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "KMeans::cluster compute_prototypes\n");
- #endif
-
- if ( this->compute_prototypes(features, prototypes, weights, assignment) < 0 )
- {
- fprintf(stderr, "KMeans::cluster restart\n");
- successKMeans = false;
- break;
- }
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "KMeans::cluster compute_delta\n");
- #endif
-
- if (iterations > 1)
- delta = this->compute_delta(oldprototypes, prototypes);
- #ifdef DEBUG_KMEANS
- print_iteration(iterations, prototypes, delta);
- #endif
- } while ((delta > d_minDelta) && (iterations < i_maxIterations));
-
- }
- #ifdef DEBUG_KMEANS
- fprintf(stderr, "KMeans::cluster: iterations = %d, delta = %f\n", iterations, delta);
- #endif
- this->compute_weights(features, weights, assignment);
- }
- void KMeans::print_iteration(int iterations, NICE::VVector & prototypes, double delta)
- {
- if (iterations > 1)
- fprintf(stderr, "KMeans::cluster: iteration=%d delta=%f\n", iterations,
- delta);
- else
- fprintf(stderr, "KMeans::cluster: iteration=%d\n", iterations);
- int k = 0;
- for (NICE::VVector::const_iterator i = prototypes.begin(); i != prototypes.end(); i++, k++)
- {
- fprintf(stderr, "class (%d)\n", k);
- std::cerr << "prototype = " << (*i) << std::endl;
- }
- }
|