123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671 |
- #include "FeatureLearningClusterBased.h"
- #include <iostream>
- #include <core/image/FilterT.h>
- #include <core/image/CircleT.h>
- #include <core/image/Convert.h>
- #include <core/vector/VectorT.h>
- // #include <vislearning/baselib/ICETools.h>
- //
- #include <vislearning/features/localfeatures/LFonHSG.h>
- #include <vislearning/features/localfeatures/LFColorSande.h>
- #include <vislearning/features/localfeatures/LFColorWeijer.h>
- #include <vislearning/features/localfeatures/LFReadCache.h>
- #include <vislearning/features/localfeatures/LFWriteCache.h>
- //
- #include <vislearning/math/cluster/KMeans.h>
- #include <vislearning/math/cluster/GMM.h>
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- //**********************************************
- //
- // PROTECTED METHODS
- //
- //**********************************************
- void FeatureLearningClusterBased::setClusterAlgo( const std::string & _clusterAlgoString, const bool & _setForInitialTraining)
- {
- //be careful with previously allocated memory
- if (this->clusterAlgo != NULL)
- delete clusterAlgo;
-
- if (_clusterAlgoString.compare("kmeans") == 0)
- {
- if ( _setForInitialTraining )
- this->clusterAlgo = new OBJREC::KMeans(this->initialNumberOfClusters);
- else
- this->clusterAlgo = new OBJREC::KMeans(this->numberOfClustersForNewImage);
- }
- else if (_clusterAlgoString.compare("GMM") == 0)
- {
- if ( _setForInitialTraining )
- this->clusterAlgo = new OBJREC::GMM(this->conf, this->initialNumberOfClusters);
- else
- this->clusterAlgo = new OBJREC::GMM(this->conf, this->numberOfClustersForNewImage);
- }
- else
- {
- std::cerr << "Unknown cluster algorithm selected, use k-means instead" << std::endl;
- if ( _setForInitialTraining )
- this->clusterAlgo = new OBJREC::KMeans(this->initialNumberOfClusters);
- else
- this->clusterAlgo = new OBJREC::KMeans(this->numberOfClustersForNewImage);
- }
- }
- void FeatureLearningClusterBased::extractFeaturesFromTrainingImages( const OBJREC::MultiDataset *_md, NICE::VVector & examplesTraining )
- {
- examplesTraining.clear();
-
- int numberOfTrainImage ( 0 );
-
- const LabeledSet *trainFiles = (*_md)["train"];
-
- //run over all training images
- LOOP_ALL_S( *trainFiles )
- {
- EACH_INFO( classno, info );
- std::string filename = info.img();
-
- NICE::ColorImage img( filename );
- if ( showTrainingImages )
- {
- showImage( img, "Input" );
- }
-
- //variables to store feature informatio
- NICE::VVector features;
- NICE::VVector cfeatures;
- NICE::VVector positions;
- //compute features
- Globals::setCurrentImgFN ( filename );
- if (featureExtractor == NULL)
- std::cerr << "feature Extractor is NULL" << std::endl;
- else
- featureExtractor->extractFeatures ( img, features, positions );
-
- //store feature information in larger data structure
- for ( NICE::VVector::iterator i = features.begin();
- i != features.end();
- i++)
- {
- //normalization :)
- i->normalizeL1();
- examplesTraining.push_back(*i);
- }
-
- //don't waste memory
- features.clear();
- positions.clear();
- numberOfTrainImage++;
- }//Loop over all training images
- }
- void FeatureLearningClusterBased::train ( const OBJREC::MultiDataset *_md )
- {
- bool loadSuccess = this->loadInitialCodebook();
-
- if ( !loadSuccess )
- {
- //**********************************************
- //
- // EXTRACT FEATURES FROM TRAINING IMAGES
- //
- //**********************************************
-
- std::cerr << " EXTRACT FEATURES FROM TRAINING IMAGES" << std::endl;
-
- NICE::VVector examplesTraining;
- this->extractFeaturesFromTrainingImages( _md, examplesTraining );
-
- //**********************************************
- //
- // CLUSTER FEATURES FROM TRAINING IMAGES
- //
- // THIS GIVES US AN INITIAL CODEBOOK
- //
- //**********************************************
- std::cerr << " CLUSTER FEATURES FROM TRAINING IMAGES" << std::endl;
- //go, go, go...
- prototypes.clear();
- std::vector< double > weights;
- std::vector< int > assignment;
- clusterAlgo->cluster ( examplesTraining, prototypes, weights, assignment);
- weights.clear();
- assignment.clear();
- }
-
- this->writeInitialCodebook();
- }
- bool FeatureLearningClusterBased::loadInitialCodebook ( )
- {
- if ( b_loadInitialCodebook )
- {
- std::cerr << " INITIAL CODEBOOK ALREADY COMPUTED - RE-USE IT" << std::endl;
- std::cerr << " // WARNING - WE DO NOT VERIFY WHETHER THIS IS THE CORRECT CODEBOOK FOR THIS TRAINING SET!!!!" << std::endl;
-
- prototypes.clear();
-
- try
- {
- prototypes.read(cacheInitialCodebook);
- }
- catch (...)
- {
- std::cerr << "Error while loading initial codebook" << std::endl;
- return false;
- }
- return true;
- }
- else
- return false;
- }
- bool FeatureLearningClusterBased::writeInitialCodebook ( )
- {
- if ( b_saveInitialCodebook )
- {
- std::cerr << " SAVE INITIAL CODEBOOK " << std::endl;
-
- try
- {
- prototypes.write( cacheInitialCodebook );
- }
- catch (...)
- {
- std::cerr << "Error while saving initial codebook" << std::endl;
- return false;
- }
- return true;
- }
- else
- return false;
- }
- //**********************************************
- //
- // PUBLIC METHODS
- //
- //**********************************************
- FeatureLearningClusterBased::FeatureLearningClusterBased ( const Config *_conf,
- const MultiDataset *_md, const std::string & _section )
- : FeatureLearningGeneric ( _conf, _section )
- {
- //feature stuff
- //! which OpponentSIFT implementation to use {NICE, VANDESANDE}
- std::string opSiftImpl;
- opSiftImpl = conf->gS ( "Descriptor", "implementation", "VANDESANDE" );
- //! read features?
- bool readfeat;
- readfeat = conf->gB ( "Descriptor", "read", true );
- //! write features?
- bool writefeat;
- writefeat = conf->gB ( "Descriptor", "write", true );
-
- showTrainingImages = conf->gB( section, "showTrainingImages", false );
- showResults = conf->gB( section, "showResults", false );
-
- resultdir = conf->gS( section, "resultdir", "/tmp/");
-
-
- //! define the initial number of clusters our codebook shall contain
- initialNumberOfClusters = conf->gI(section, "initialNumberOfClusters", 10);
- //! define the number of clusters we want to compute for an unseen image
- numberOfClustersForNewImage = conf->gI(section, "numberOfClustersForNewImage", 10);
-
- //! define the clustering algorithm to be used
- std::string clusterAlgoString = conf->gS(section, "clusterAlgo", "kmeans");
-
- //! define the distance function to be used
- std::string distFunctionString = conf->gS(section, "distFunction", "euclidian");
-
-
- //**********************************************
- //
- // SET UP VARIABLES AND METHODS
- // - FEATURE TYPE
- // - CLUSTERING ALGO
- // - DISTANCE FUNCTION
- // - ...
- //
- //**********************************************
-
- std::cerr << " SET UP VARIABLES AND METHODS " << std::endl;
-
- // Welche Opponentsift Implementierung soll genutzt werden ?
- LocalFeatureRepresentation *cSIFT = NULL;
- LocalFeatureRepresentation *writeFeats = NULL;
- LocalFeatureRepresentation *readFeats = NULL;
- this->featureExtractor = NULL;
- if ( opSiftImpl == "NICE" )
- {
- cSIFT = new OBJREC::LFonHSG ( conf, "HSGtrain" );
- }
- else if ( opSiftImpl == "VANDESANDE" )
- {
- cSIFT = new OBJREC::LFColorSande ( conf, "LFColorSandeTrain" );
- }
- else
- {
- fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
- }
- this->featureExtractor = cSIFT;
-
- if ( writefeat )
- {
- // write the features to a file, if there isn't any to read
- writeFeats = new LFWriteCache ( conf, cSIFT );
- this->featureExtractor = writeFeats;
- }
- if ( readfeat )
- {
- // read the features from a file
- if ( writefeat )
- {
- readFeats = new LFReadCache ( conf, writeFeats, -1 );
- }
- else
- {
- readFeats = new LFReadCache ( conf, cSIFT, -1 );
- }
- this->featureExtractor = readFeats;
- }
-
- this->clusterAlgo = NULL;
- this->setClusterAlgo( clusterAlgoString, true /*set cluster algo for training*/ );
-
- if (distFunctionString.compare("euclidian") == 0)
- {
- distFunction = new NICE::EuclidianDistance<double>();
- }
- else
- {
- std::cerr << "Unknown vector distance selected, use euclidian instead" << std::endl;
- distFunction = new NICE::EuclidianDistance<double>();
- }
-
- //run the training to initially compute a codebook and stuff like that
- this->train( _md );
-
- //only set feature stuff to NULL, deletion of the underlying object is done in the destructor
- if ( cSIFT != NULL )
- cSIFT = NULL;
- if ( writeFeats != NULL )
- writeFeats = NULL;
- if ( readFeats != NULL )
- readFeats = NULL ;
-
- this->setClusterAlgo( clusterAlgoString, false /*set cluster algo for feature learning*/ );
-
- //so far, we have not seen any new image
- this->newImageCounter = 0;
-
- //TODO stupid
- this->maxValForVisualization = 0.005;
- }
- FeatureLearningClusterBased::~FeatureLearningClusterBased()
- {
- // clean-up
- if ( clusterAlgo != NULL )
- delete clusterAlgo;
- if ( distFunction != NULL )
- delete distFunction;
- if ( featureExtractor != NULL )
- delete featureExtractor;
- }
- void FeatureLearningClusterBased::learnNewFeatures ( const std::string & _filename )
- {
- NICE::ColorImage img( _filename );
-
- int xsize ( img.width() );
- int ysize ( img.height() );
-
- //variables to store feature information
- NICE::VVector newFeatures;
- NICE::VVector cfeatures;
- NICE::VVector positions;
- //compute features
- std::cerr << " EXTRACT FEATURES FROM UNSEEN IMAGE" << std::endl;
- Globals::setCurrentImgFN ( _filename );
- featureExtractor->extractFeatures ( img, newFeatures, positions );
-
- //store feature information in larger data structure
- for ( NICE::VVector::iterator i = newFeatures.begin();
- i != newFeatures.end();
- i++)
- {
- //normalization :)
- i->normalizeL1();
- }
-
- //cluster features
- std::cerr << " CLUSTER FEATURES FROM UNSEEN IMAGE" << std::endl;
- NICE::VVector prototypesForNewImage;
- std::vector< double > weights;
- std::vector< int > assignment;
- clusterAlgo->cluster ( newFeatures, prototypesForNewImage, weights, assignment);
-
- if ( b_evaluationWhileFeatureLearning )
- {
- //visualize new clusters
- int tmpProtCnt ( 0 );
- for (NICE::VVector::const_iterator protIt = prototypesForNewImage.begin(); protIt != prototypesForNewImage.end(); protIt++, tmpProtCnt++)
- {
- double distToNewCluster ( std::numeric_limits<double>::max() );
- int indexOfMostSimFeat( 0 );
- double tmpDist;
- int tmpCnt ( 0 );
-
- for ( NICE::VVector::iterator i = newFeatures.begin();
- i != newFeatures.end();
- i++, tmpCnt++)
- {
- tmpDist = this->distFunction->calculate( *i, *protIt );
- if ( tmpDist < distToNewCluster )
- {
- distToNewCluster = tmpDist;
- indexOfMostSimFeat = tmpCnt;
- }
- }
-
- int posX ( ( positions[indexOfMostSimFeat] ) [0] );
- int posY ( ( positions[indexOfMostSimFeat] ) [1] );
-
- NICE::Circle circ ( Coord( posX, posY), 10 /* radius*/, Color(200,0,255) );
- img.draw(circ);
- }
-
-
- //draw features most similar to old clusters
- tmpProtCnt = 0;
- for (NICE::VVector::const_iterator protIt = prototypes.begin(); protIt != prototypes.end(); protIt++, tmpProtCnt++)
- {
- double distToNewCluster ( std::numeric_limits<double>::max() );
- int indexOfMostSimFeat( 0 );
- double tmpDist;
- int tmpCnt ( 0 );
-
- for ( NICE::VVector::iterator i = newFeatures.begin();
- i != newFeatures.end();
- i++, tmpCnt++)
- {
- tmpDist = this->distFunction->calculate( *i, *protIt );
- if ( tmpDist < distToNewCluster )
- {
- distToNewCluster = tmpDist;
- indexOfMostSimFeat = tmpCnt;
- }
- }
-
- int posX ( ( positions[indexOfMostSimFeat] ) [0] );
- int posY ( ( positions[indexOfMostSimFeat] ) [1] );
- NICE::Circle circ ( Coord( posX, posY), 5 /* radius*/, Color(200,255,0 ) );
- img.draw(circ);
- }
-
- if ( showResults )
- showImage(img, "Current (new) image and most similar feature for new cluster");
- else
- {
- std::vector< std::string > list2;
- StringTools::split ( _filename, '/', list2 );
- std::string destination ( resultdir + NICE::intToString(this->newImageCounter) + "_" + list2.back() + "_1_oldAndNewClusters.ppm");
- img.writePPM( destination );
- }
- }
-
- //compute score for every cluster: #assigned features * distance to current cluster centers
-
- NICE::Vector distancesToCurrentClusters ( numberOfClustersForNewImage, 0.0 );
- NICE::Vector clusterSizes ( numberOfClustersForNewImage, 0.0 ); //i.e., the number of assignments, or a derived number
-
- //compute "relevance" of every new cluster
-
- std::cerr << " COMPUTE SIZES OF NEW CLUSTERS" << std::endl;
- for (std::vector<int>::const_iterator assignIt = assignment.begin(); assignIt != assignment.end(); assignIt++)
- {
- clusterSizes[*assignIt]++;
- }
- clusterSizes.normalizeL1();
-
- std::cerr << "cluster Sizes: " << clusterSizes << std::endl;
-
-
- //compute distances of new cluster centers to old cluster centers
- std::cerr << " COMPUTE DISTANCES BETWEEN NEW AND OLD CLUSTERS" << std::endl;
- NICE::Vector::iterator distanceIt = distancesToCurrentClusters.begin();
- for ( NICE::VVector::const_iterator newProtIt = prototypesForNewImage.begin(); newProtIt != prototypesForNewImage.end(); newProtIt++, distanceIt++)
- {
- double minDist ( std::numeric_limits<double>::max() );
- double tmpDist;
- for ( NICE::VVector::const_iterator protIt = prototypes.begin(); protIt != prototypes.end(); protIt ++)
- {
- //compute distance
- tmpDist = this->distFunction->calculate( *protIt, *newProtIt );
- if (tmpDist < minDist)
- minDist = tmpDist;
- }
-
- *distanceIt = minDist;
- }
-
- std::cerr << "distances: " << distancesToCurrentClusters << std::endl;
-
- //compute final scores for the new image
- NICE::Vector clusterScores ( numberOfClustersForNewImage, 0.0 );
- for (uint i = 0; i < numberOfClustersForNewImage; i++)
- {
- clusterScores[i] = clusterSizes[i] * distancesToCurrentClusters[i];
- }
-
- std::cerr << "final cluster scores for new image: " << clusterScores << std::endl;
-
- NICE::Vector chosenClusterCenter ( prototypesForNewImage[ clusterScores.MaxIndex() ] );
-
-
- //include the chosen information into the currently used prototypes
- prototypes.push_back( chosenClusterCenter );
-
- if ( b_evaluationWhileFeatureLearning )
- {
-
- NICE::ColorImage imgTmp( _filename );
-
- double distToNewCluster ( std::numeric_limits<double>::max() );
- int indexOfMostSimFeat( 0 );
- double tmpDist;
- int tmpCnt ( 0 );
-
- for ( NICE::VVector::iterator i = newFeatures.begin();
- i != newFeatures.end();
- i++, tmpCnt++)
- {
- tmpDist = this->distFunction->calculate( *i, chosenClusterCenter );
- if ( tmpDist < distToNewCluster )
- {
- distToNewCluster = tmpDist;
- indexOfMostSimFeat = tmpCnt;
- }
- }
-
- int posX ( ( positions[indexOfMostSimFeat] ) [0] );
- int posY ( ( positions[indexOfMostSimFeat] ) [1] );
- NICE::Circle circ ( Coord( posX, posY), 10 /* radius*/, Color(200,0,255) );
- imgTmp.draw(circ);
-
- if ( showResults )
- showImage(imgTmp, "Current (new) image and most similar feature for new cluster");
- else
- {
- std::vector< std::string > list2;
- StringTools::split ( _filename, '/', list2 );
- std::string destination ( resultdir + NICE::intToString(this->newImageCounter) + "_" + list2.back() + "_2_bestNewCluster.ppm");
- imgTmp.writePPM( destination );
- }
- }
-
- //this was a new image, so we increase our internal counter
- (this->newImageCounter)++;
- }
- NICE::FloatImage FeatureLearningClusterBased::evaluateCurrentCodebook ( const std::string & _filename , const bool & beforeComputingNewFeatures )
- {
- NICE::ColorImage img( _filename );
- if ( showTrainingImages )
- {
- showImage( img, "Input" );
- }
-
- int xsize ( img.width() );
- int ysize ( img.height() );
-
- //variables to store feature information
- NICE::VVector features;
- NICE::VVector cfeatures;
- NICE::VVector positions;
- //compute features
- Globals::setCurrentImgFN ( _filename );
- featureExtractor->extractFeatures ( img, features, positions );
-
- FloatImage noveltyImage ( xsize, ysize );
- noveltyImage.set ( 0.0 );
-
- double maxDist ( 0.0 );
-
- NICE::VVector::const_iterator posIt = positions.begin();
- //store feature information in larger data structure
- for ( NICE::VVector::iterator i = features.begin();
- i != features.end();
- i++, posIt++)
- {
- //normalization :)
- i->normalizeL1();
-
- //loop over codebook representatives
- double minDist ( std::numeric_limits<double>::max() );
- for (NICE::VVector::const_iterator it = prototypes.begin(); it != prototypes.end(); it++)
- {
- //compute distance
- double tmpDist ( this->distFunction->calculate(*i,*it) );
- if (tmpDist < minDist)
- minDist = tmpDist;
- }
-
- if (minDist > maxDist)
- maxDist = minDist;
- //take minimum distance and store in in a float image
-
- noveltyImage ( (*posIt)[0], (*posIt)[1] ) = minDist;
- }
-
- //gauss-filtering for nicer visualization
- FloatImage noveltyImageGaussFiltered ( xsize, ysize );
- float sigma ( 3.0 );
- FilterT<float, float, float> filter;
- filter.filterGaussSigmaApproximate ( noveltyImage, sigma, &noveltyImageGaussFiltered );
- double maxFiltered ( noveltyImageGaussFiltered.max() );
- std::cerr << "maximum distance of Training images: " << maxDist << std::endl;
- std::cerr << "maximum distance of Training images after filtering: " << maxFiltered << std::endl;
- if ( beforeComputingNewFeatures )
- this->oldMaxDist = maxFiltered;
- //for suitable visualization of scores between zero (known) and one (unknown)
- // noveltyImageGaussFiltered( 0 , 0 ) = std::max<double>(maxDist, 1.0);
-
- //convert float to RGB
- NICE::ColorImage noveltyImageRGB ( xsize, ysize );
- // ICETools::convertToRGB ( noveltyImageGaussFiltered, noveltyImageRGB );
- if ( beforeComputingNewFeatures )
- {
- imageToPseudoColorWithRangeSpecification( noveltyImageGaussFiltered, noveltyImageRGB, 0 /* min */, maxValForVisualization /* maxFiltered*/ /* max */ );
- std::cerr << "set max value to: " << noveltyImageGaussFiltered.max() << std::endl;
- }
- else
- {
- imageToPseudoColorWithRangeSpecification( noveltyImageGaussFiltered, noveltyImageRGB, 0 /* min */, maxValForVisualization /*this->oldMaxDist*/ /* max */ );
- std::cerr << "set max value to: " << this->oldMaxDist << std::endl;
- }
-
-
-
- if ( showResults )
- showImage(noveltyImageRGB, "Novelty Image");
- else
- {
- std::vector< std::string > list2;
- StringTools::split ( _filename, '/', list2 );
- std::string destination ( resultdir + NICE::intToString(this->newImageCounter -1 ) + "_" + list2.back() + "_3_updatedNoveltyMap.ppm");
- if ( beforeComputingNewFeatures )
- destination = resultdir + NICE::intToString(this->newImageCounter) + "_" + list2.back() + "_0_initialNoveltyMap.ppm";
- noveltyImageRGB.writePPM( destination );
- }
-
-
- // now look where the closest features for the current cluster indices are
- int tmpProtCnt ( 0 );
- for (NICE::VVector::const_iterator protIt = prototypes.begin(); protIt != prototypes.end(); protIt++, tmpProtCnt++)
- {
- double distToNewCluster ( std::numeric_limits<double>::max() );
- int indexOfMostSimFeat( 0 );
- double tmpDist;
- int tmpCnt ( 0 );
-
- for ( NICE::VVector::iterator i = features.begin();
- i != features.end();
- i++, tmpCnt++)
- {
- tmpDist = this->distFunction->calculate( *i, *protIt );
- if ( tmpDist < distToNewCluster )
- {
- distToNewCluster = tmpDist;
- indexOfMostSimFeat = tmpCnt;
- }
- }
-
- int posX ( ( positions[indexOfMostSimFeat] ) [0] );
- int posY ( ( positions[indexOfMostSimFeat] ) [1] );
- NICE::Circle circ ( Coord( posX, posY), 2*tmpProtCnt /* radius*/, Color(200,0,255 ) );
- img.draw(circ);
- }
-
- if ( showResults )
- showImage(img, "Current image and most similar features for current cluster");
- else
- {
- std::vector< std::string > list2;
- StringTools::split ( _filename, '/', list2 );
- std::string destination ( resultdir + NICE::intToString(this->newImageCounter-1) + "_" + list2.back() + "_3_updatedCurrentCluster.ppm");
- if ( beforeComputingNewFeatures )
- destination = resultdir + NICE::intToString(this->newImageCounter) + "_" + list2.back() + "_0_initialCurrentCluster.ppm";
-
- img.writePPM( destination );
- }
-
- return noveltyImageGaussFiltered;
- }
|