GMM.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. #ifdef NICE_USELIB_OPENMP
  2. #include <omp.h>
  3. #endif
  4. #include <stdio.h>
  5. #include "GMM.h"
  6. #include <core/vector/Algorithms.h>
  7. #include "vislearning/math/cluster/KMeans.h"
  8. #define DEBUGGMM
  9. using namespace OBJREC;
  10. using namespace NICE;
  11. using namespace std;
  12. GMM::GMM()
  13. {
  14. gaussians = 3;
  15. maxiter = 200;
  16. featsperclass = 0;
  17. tau = 10.0;
  18. srand ( time ( NULL ) );
  19. comp = false;
  20. }
  21. GMM::GMM ( int _gaussians ) : gaussians ( _gaussians )
  22. {
  23. maxiter = 200;
  24. featsperclass = 0;
  25. tau = 0.0;
  26. srand ( time ( NULL ) );
  27. pyramid = false;
  28. comp = false;
  29. }
  30. GMM::GMM ( const Config *conf, int _gaussians ) : gaussians ( _gaussians )
  31. {
  32. this->conf = conf;
  33. if ( gaussians < 2 )
  34. gaussians = conf->gI ( "GMM", "gaussians", 2 );
  35. maxiter = conf->gI ( "GMM", "maxiter", 200 );
  36. featsperclass = conf->gI ( "GMM", "featsperclass", 0 );
  37. tau = conf->gD ( "GMM", "tau", 100.0 );
  38. pyramid = conf->gB ( "GMM", "pyramid", false );
  39. comp = false;
  40. srand ( time ( NULL ) );
  41. }
  42. void GMM::computeMixture ( Examples examples )
  43. {
  44. int fsize = ( int ) examples.size();
  45. assert ( fsize >= gaussians );
  46. dim = examples[0].second.vec->size();
  47. int samples = fsize;
  48. if ( featsperclass > 0 )
  49. {
  50. samples = featsperclass * gaussians;
  51. samples = std::min ( samples, fsize );
  52. }
  53. // Copy data in Matrix
  54. VVector dataset;
  55. cout << "reduced training data for GMM from " << fsize << " features to " << samples << " features.";
  56. for ( int i = 0; i < samples; i++ )
  57. {
  58. int k = rand() % fsize;
  59. NICE::Vector *vec = examples[k].second.vec;
  60. dataset.push_back ( *vec );
  61. }
  62. computeMixture ( dataset );
  63. }
  64. void GMM::computeMixture ( const VVector &DataSet )
  65. {
  66. // Learn the GMM model
  67. assert ( DataSet.size() >= ( uint ) gaussians );
  68. //initEMkMeans(DataSet); // initialize the model
  69. srand ( time ( NULL ) );
  70. bool poweroftwo = false;
  71. int power = 1;
  72. while ( power <= gaussians )
  73. {
  74. if ( gaussians == power )
  75. poweroftwo = true;
  76. power *= 2;
  77. }
  78. if ( poweroftwo && pyramid )
  79. {
  80. initEM ( DataSet ); // initialize the model
  81. int g = 1;
  82. while ( g <= gaussians )
  83. {
  84. cout << "g = " << g << endl;
  85. doEM ( DataSet, g );
  86. if ( 2*g <= gaussians )
  87. {
  88. for ( int i = g; i < g*2; i++ )
  89. {
  90. mu[i] = mu[i-g];
  91. sparse_sigma[i] = sparse_sigma[i-g];
  92. sparse_inv_sigma[i] = sparse_inv_sigma[i-g];
  93. log_det_sigma[i] = log_det_sigma[i-g];
  94. priors[i] = priors[i-g];
  95. double interval = 1.0;
  96. for ( int k = 0; k < ( int ) mu[i].size(); k++ )
  97. {
  98. interval = mu[i][k];
  99. interval = std::max ( interval, 0.1 );
  100. double r = ( interval * ( ( double ) rand() / ( double ) RAND_MAX ) ) - interval / 2.0;
  101. mu[i][k] += r;
  102. }
  103. }
  104. }
  105. g *= 2;
  106. }
  107. }
  108. else
  109. {
  110. initEMkMeans ( DataSet ); // initialize the model
  111. doEM ( DataSet, gaussians );
  112. }
  113. // performs EM
  114. }
  115. inline double diagDeterminant ( const NICE::Vector &sparse_mat )
  116. {
  117. double det = 1.0;
  118. for ( int i = 0; i < ( int ) sparse_mat.size(); i++ )
  119. {
  120. det *= sparse_mat[i];
  121. }
  122. return det;
  123. }
  124. inline double logdiagDeterminant ( const NICE::Vector &sparse_mat )
  125. {
  126. double det = 0.0;
  127. for ( int i = 0; i < ( int ) sparse_mat.size(); i++ )
  128. {
  129. det += log ( sparse_mat[i] );
  130. }
  131. return det;
  132. }
  133. inline NICE::Vector diagInverse ( const NICE::Vector &sparse_mat )
  134. {
  135. NICE::Vector inv ( sparse_mat.size() );
  136. for ( int i = 0; i < ( int ) sparse_mat.size(); i++ )
  137. {
  138. inv[i] = 1.0 / sparse_mat[i];
  139. }
  140. return inv;
  141. }
  142. void GMM::initEMkMeans ( const VVector &DataSet )
  143. {
  144. /*init GMM with k-Means*/
  145. KMeans k ( gaussians );
  146. VVector means;
  147. vector<double> weights;
  148. vector<int> assignment;
  149. k.cluster ( DataSet, means, weights, assignment );
  150. int nData = DataSet.size();
  151. this->dim = DataSet[0].size();
  152. cdimval = dim * log ( 2 * 3.14159 );
  153. vector<int> pop ( gaussians, 0 );
  154. priors.resize ( gaussians );
  155. mu = VVector ( gaussians, dim );
  156. log_det_sigma.clear();
  157. vector<int> allk;
  158. NICE::Vector globmean ( dim );
  159. globmean.set ( 0.0 );
  160. for ( int n = 0; n < ( int ) DataSet.size(); n++ ) /* getting the max value for time */
  161. {
  162. globmean = globmean + DataSet[n];
  163. }
  164. globmean *= ( 1.0 / nData );
  165. NICE::Vector sparse_globsigma;
  166. sparse_globsigma.resize ( dim );
  167. sparse_globsigma.set ( 0.0 );
  168. for ( int i = 0; i < ( int ) DataSet.size(); i++ ) // Covariances updates
  169. {
  170. // nur diagonal Elemente berechnen
  171. for ( int d = 0; d < dim; d++ )
  172. {
  173. double diff = ( DataSet[i][d] - globmean[d] );
  174. sparse_globsigma[d] += diff * diff;
  175. }
  176. }
  177. sparse_globsigma *= ( 1.0 / DataSet.size() );
  178. for ( int i = 0; i < gaussians; i++ )
  179. {
  180. NICE::Vector _inv_sigma = diagInverse ( sparse_globsigma );
  181. sparse_sigma.push_back ( sparse_globsigma );
  182. sparse_inv_sigma.push_back ( _inv_sigma );
  183. log_det_sigma.push_back ( logdiagDeterminant ( sparse_globsigma ) );
  184. mu[i] = means[i];
  185. //priors[i]=1.0/(double)gaussians; // set equi-probables states
  186. priors[i] = weights[i]; // set kMeans weights
  187. }
  188. }
  189. void GMM::initEM ( const VVector &DataSet )
  190. {
  191. /* init the GaussianMixture by using randomized meanvectors */
  192. int nData = DataSet.size();
  193. this->dim = DataSet[0].size();
  194. cdimval = dim * log ( 2 * 3.14159 );
  195. vector<int> pop ( gaussians, 0 );
  196. priors.resize ( gaussians );
  197. mu = VVector ( gaussians, dim );
  198. log_det_sigma.clear();
  199. vector<int> allk;
  200. NICE::Vector globmean ( dim );
  201. globmean.set ( 0.0 );
  202. for ( int n = 0; n < ( int ) DataSet.size(); n++ ) /* getting the max value for time */
  203. {
  204. globmean = globmean + DataSet[n];
  205. }
  206. globmean *= ( 1.0 / nData );
  207. NICE::Vector sparse_globsigma;
  208. sparse_globsigma.resize ( dim );
  209. sparse_globsigma.set ( 0.0 );
  210. for ( int i = 0; i < ( int ) DataSet.size(); i++ ) // Covariances updates
  211. {
  212. // nur diagonal Elemente berechnen
  213. for ( int d = 0; d < dim; d++ )
  214. {
  215. double diff = ( DataSet[i][d] - globmean[d] );
  216. sparse_globsigma[d] += diff * diff;
  217. }
  218. }
  219. sparse_globsigma *= ( 1.0 / DataSet.size() );
  220. for ( int i = 0; i < gaussians; i++ )
  221. {
  222. priors[i] = 1.0 / ( double ) gaussians; // set equi-probables states
  223. NICE::Vector _inv_sigma = diagInverse ( sparse_globsigma );
  224. sparse_sigma.push_back ( sparse_globsigma );
  225. sparse_inv_sigma.push_back ( _inv_sigma );
  226. log_det_sigma.push_back ( logdiagDeterminant ( sparse_globsigma ) );
  227. bool newv = false;
  228. int k;
  229. while ( !newv )
  230. {
  231. newv = true;
  232. k = rand() % nData;
  233. for ( int nk = 0; nk < ( int ) allk.size(); nk++ )
  234. if ( allk[nk] == k )
  235. {
  236. newv = false;
  237. }
  238. if ( newv )
  239. allk.push_back ( k );
  240. }
  241. mu[i] = DataSet[k];
  242. }
  243. }
  244. inline void sumRow ( NICE::Matrix mat, NICE::Vector &res )
  245. {
  246. int row = mat.rows();
  247. int column = mat.cols();
  248. res = NICE::Vector ( column );
  249. res.set ( 1e-5f );
  250. //#pragma omp parallel for
  251. for ( int i = 0; i < column; i++ ) {
  252. for ( int j = 0; j < row; j++ ) {
  253. res[i] += mat ( j, i );
  254. }
  255. }
  256. }
  257. double GMM::logpdfState ( const NICE::Vector &Vin, int state )
  258. {
  259. /* get the probability density for a given state and a given vector */
  260. double p;
  261. NICE::Vector dif;
  262. dif = Vin;
  263. dif -= mu[state];
  264. p = 0.0;
  265. for ( int i = 0; i < ( int ) dif.size(); i++ )
  266. {
  267. p += dif[i] * dif[i] * sparse_inv_sigma[state][i];
  268. }
  269. p = -0.5 * ( p + cdimval + log_det_sigma[state] );
  270. return p;
  271. }
  272. int GMM::doEM ( const VVector &DataSet, int nbgaussians )
  273. {
  274. /* perform Expectation/Maximization on the given Dataset :
  275. Matrix DataSet(nSamples,Dimensions).
  276. The GaussianMixture Object must be initialised before
  277. (see initEM or initEMkMeans methods ) */
  278. #ifdef DEBUG
  279. cerr << "GMM::start EM" << endl;
  280. #endif
  281. int nData = DataSet.size();
  282. int iter = 0;
  283. double log_lik;
  284. double log_lik_threshold = 1e-6f;
  285. double log_lik_old = -1e10f;
  286. NICE::Matrix unity ( dim, dim, 0.0 );
  287. for ( int k = 0; k < dim; k++ )
  288. unity ( k, k ) = 1.0;
  289. //EM loop
  290. while ( true )
  291. {
  292. #ifdef DEBUGGMM
  293. cerr << "GMM::EM: iteration: " << iter << endl;
  294. #endif
  295. vector<double> sum_p;
  296. sum_p.resize ( nData );
  297. for ( int i = 0; i < nData; i++ )
  298. {
  299. sum_p[i] = 0.0;
  300. }
  301. NICE::Matrix pxi ( nData, gaussians );
  302. pxi.set ( 0.0 );
  303. NICE::Matrix pix ( nData, gaussians );
  304. pix.set ( 0.0 );
  305. NICE::Vector E;
  306. iter++;
  307. if ( iter > maxiter ) {
  308. cerr << "EM stops here. Max number of iterations (" << maxiter << ") has been reached." << endl;
  309. return iter;
  310. }
  311. double sum_log = 0.0;
  312. // computing expectation
  313. double maxp = -numeric_limits<double>::max();
  314. vector<double> maxptmp ( nData, -numeric_limits<double>::max() );
  315. #pragma omp parallel for
  316. for ( int i = 0; i < nData; i++ )
  317. {
  318. for ( int j = 0; j < nbgaussians; j++ )
  319. {
  320. double p = logpdfState ( DataSet[i], j ); // log(P(x|i))
  321. maxptmp[i] = std::max ( maxptmp[i], p );
  322. pxi ( i, j ) = p;
  323. }
  324. }
  325. for ( int i = 0; i < nData; i++ )
  326. {
  327. maxp = std::max ( maxp, maxptmp[i] );
  328. }
  329. #pragma omp parallel for
  330. for ( int i = 0; i < nData; i++ )
  331. {
  332. sum_p[i] = 0.0;
  333. for ( int j = 0; j < nbgaussians; j++ )
  334. {
  335. double p = pxi ( i, j ) - maxp; // log(P(x|i))
  336. p = exp ( p ); // P(x|i)
  337. if ( p < 1e-40 )
  338. p = 1e-40;
  339. pxi ( i, j ) = p;
  340. sum_p[i] += p * priors[j];
  341. }
  342. }
  343. for ( int i = 0; i < nData; i++ )
  344. {
  345. sum_log += log ( sum_p[i] );
  346. }
  347. #pragma omp parallel for
  348. for ( int j = 0; j < nbgaussians; j++ )
  349. {
  350. for ( int i = 0; i < nData; i++ )
  351. {
  352. pix ( i, j ) = ( pxi ( i, j ) * priors[j] ) / sum_p[i]; // then P(i|x)
  353. }
  354. }
  355. // here we compute the log likehood
  356. log_lik = sum_log / nData;
  357. #ifdef DEBUGGMM
  358. cout << "diff: " << fabs ( ( log_lik / log_lik_old ) - 1 ) << " thresh: " << log_lik_threshold << " sum: " << sum_log << endl;
  359. //cout << "logold: " << log_lik_old << " lognew: " << log_lik << endl;
  360. #endif
  361. if ( fabs ( ( log_lik / log_lik_old ) - 1 ) < log_lik_threshold )
  362. {
  363. //if log likehood hasn't move enough, the algorithm has converged, exiting the loop
  364. return iter;
  365. }
  366. log_lik_old = log_lik;
  367. // Update Step
  368. sumRow ( pix, E );
  369. #pragma omp parallel for
  370. for ( int j = 0; j < nbgaussians; j++ )
  371. {
  372. priors[j] = ( E[j] + tau ) / ( nData + tau * nbgaussians ); // new priors
  373. NICE::Vector tmu ( dim );
  374. tmu.set ( 0.0 );
  375. NICE::Vector sparse_tmsigma ( dim );
  376. sparse_tmsigma.set ( 0.0 );
  377. for ( int i = 0; i < nData; i++ ) // Means update loop
  378. {
  379. tmu = tmu + ( DataSet[i] * pix ( i, j ) );
  380. }
  381. NICE::Vector tmu2 = mu[j];
  382. mu[j] = tmu + tau * tmu2;
  383. mu[j] = mu[j] * ( 1.0 / ( E[j] + tau ) );
  384. for ( int i = 0; i < nData; i++ ) // Covariances updates
  385. {
  386. // nur diagonal Elemente berechnen
  387. for ( int d = 0; d < dim; d++ )
  388. {
  389. sparse_tmsigma[d] += DataSet[i][d] * DataSet[i][d] * pix ( i, j );
  390. }
  391. }
  392. NICE::Vector sparse_tmsigma2 ( dim );
  393. for ( int d = 0; d < dim; d++ )
  394. {
  395. sparse_tmsigma[d] += 1e-5f;
  396. sparse_tmsigma2[d] = sparse_sigma[j][d] + tmu2[d] * tmu2[d];
  397. sparse_sigma[j][d] = ( sparse_tmsigma[d] + tau * sparse_tmsigma2[d] ) / ( E[j] + tau ) - ( mu[j][d] * mu[j][d] );
  398. }
  399. sparse_inv_sigma[j] = diagInverse ( sparse_sigma[j] );
  400. log_det_sigma[j] = logdiagDeterminant ( sparse_sigma[j] );
  401. }
  402. if ( comp )
  403. {
  404. double dist = compare();
  405. cout << "dist for iteration " << iter << endl;
  406. cout << "d: " << dist << endl;
  407. }
  408. }
  409. #ifdef DEBUG
  410. cerr << "GMM::finished EM after " << iter << " iterations" << endl;
  411. #endif
  412. return iter;
  413. }
  414. int GMM::getBestClass ( const NICE::Vector &v, double *bprob )
  415. {
  416. int bestclass = 0;
  417. double maxprob = logpdfState ( v, 0 ) + log ( priors[0] ); // log(P(x|i))
  418. for ( int i = 1; i < gaussians; i++ )
  419. {
  420. double prob = logpdfState ( v, i ) + log ( priors[i] ); // log(P(x|i))
  421. if ( prob > maxprob )
  422. {
  423. maxprob = prob;
  424. bestclass = i;
  425. }
  426. }
  427. if ( bprob != NULL )
  428. *bprob = maxprob;
  429. return bestclass;
  430. }
  431. void GMM::getProbs ( const NICE::Vector &vin, SparseVector &outprobs )
  432. {
  433. outprobs.clear();
  434. outprobs.setDim ( gaussians );
  435. Vector probs;
  436. getProbs ( vin, probs );
  437. for ( int i = 0; i < gaussians; i++ )
  438. {
  439. if ( probs[i] > 1e-7f )
  440. outprobs[i] = probs[i];
  441. }
  442. }
  443. void GMM::getProbs ( const NICE::Vector &vin, Vector &outprobs )
  444. {
  445. Vector probs;
  446. probs.resize ( gaussians );
  447. probs.set ( 0.0 );
  448. double probsum = 0.0;
  449. double maxp = -numeric_limits<double>::max();
  450. for ( int i = 0; i < gaussians; i++ )
  451. {
  452. probs[i] = logpdfState ( vin, i ) + log ( priors[i] ); // log(P(x|i))
  453. maxp = std::max ( maxp, probs[i] );
  454. }
  455. for ( int i = 0; i < gaussians; i++ )
  456. {
  457. probs[i] -= maxp;
  458. probs[i] = exp ( probs[i] );
  459. probsum += probs[i];
  460. }
  461. // normalize probs
  462. #pragma omp parallel for
  463. for ( int i = 0; i < gaussians; i++ )
  464. {
  465. probs[i] /= probsum;
  466. }
  467. outprobs = probs;
  468. }
  469. void GMM::getFisher ( const NICE::Vector &vin, SparseVector &outprobs )
  470. {
  471. int size = gaussians * 2 * dim;
  472. outprobs.clear();
  473. outprobs.setDim ( size );
  474. int counter = 0;
  475. NICE::Vector classprobs;
  476. classprobs.resize ( gaussians );
  477. classprobs.set ( 0.0 );
  478. double maxp = -numeric_limits<double>::max();
  479. for ( int i = 0; i < gaussians; i++ )
  480. {
  481. classprobs[i] = logpdfState ( vin, i ) + log ( priors[i] ); // log(P(x|i))
  482. maxp = std::max ( maxp, classprobs[i] );
  483. }
  484. for ( int i = 0; i < gaussians; i++ )
  485. {
  486. double p = classprobs[i] - maxp;
  487. p = exp ( p );
  488. for ( int d = 0; d < dim; d++ )
  489. {
  490. double diff = vin[d] - mu[i][d];
  491. double sigma2 = sparse_sigma[i][d] * sparse_sigma[i][d];
  492. double sigma3 = sigma2 * sparse_sigma[i][d];
  493. double normmu = sqrt ( priors[i] / sigma2 );
  494. double normsig = sqrt ( ( 2.0 * priors[i] ) / sigma2 );
  495. double gradmu = ( p * ( diff / sigma2 ) ) / normmu;
  496. double gradsig = ( p * ( ( diff * diff ) / sigma3 - 1.0 / sparse_sigma[i][d] ) ) / normsig;
  497. if ( fabs ( gradmu ) > 1e-7f )
  498. outprobs[counter] = gradmu;
  499. counter++;
  500. if ( fabs ( gradsig ) > 1e-7f )
  501. outprobs[counter] = gradsig;
  502. counter++;
  503. }
  504. }
  505. }
  506. void GMM::cluster ( const VVector & features, VVector & prototypes, vector<double> & weights, vector<int> & assignment )
  507. {
  508. computeMixture ( features );
  509. prototypes.clear();
  510. weights.clear();
  511. assignment.clear();
  512. for ( int i = 0; i < ( int ) features.size(); i++ )
  513. {
  514. int c = getBestClass ( features[i] );
  515. assignment.push_back ( c );
  516. weights.push_back ( priors[c] );
  517. }
  518. for ( int c = 0; c < gaussians; c++ )
  519. prototypes.push_back ( mu[c] );
  520. cout << "tau: " << tau << endl;
  521. }
  522. void GMM::saveData ( const std::string filename )
  523. {
  524. ofstream fout ( filename.c_str() );
  525. fout << gaussians << " " << dim << endl;
  526. mu >> fout;
  527. fout << endl;
  528. for ( int n = 0; n < gaussians; n++ )
  529. {
  530. fout << sparse_sigma[n] << endl;
  531. }
  532. for ( int n = 0; n < gaussians; n++ )
  533. {
  534. fout << priors[n] << " ";
  535. }
  536. fout.close();
  537. }
  538. bool GMM::loadData ( const std::string filename )
  539. {
  540. cerr << "read GMM Data" << endl;
  541. ifstream fin ( filename.c_str() );
  542. if ( fin.fail() )
  543. {
  544. cerr << "GMM: Datei " << filename << " nicht gefunden!" << endl;
  545. return false;
  546. }
  547. fin >> gaussians;
  548. fin >> dim;
  549. cdimval = log ( pow ( 2 * 3.14159, dim ) );
  550. mu.clear();
  551. for ( int i = 0; i < gaussians; i++ )
  552. {
  553. NICE::Vector tmp;
  554. fin >> tmp;
  555. mu.push_back ( tmp );
  556. }
  557. log_det_sigma.clear();
  558. for ( int n = 0; n < gaussians; n++ )
  559. {
  560. NICE::Matrix _sigma;
  561. NICE::Vector _sparse_sigma;
  562. _sparse_sigma = NICE::Vector ( dim );
  563. fin >> _sparse_sigma;
  564. sparse_sigma.push_back ( _sparse_sigma );
  565. sparse_inv_sigma.push_back ( diagInverse ( sparse_sigma[n] ) );
  566. log_det_sigma.push_back ( logdiagDeterminant ( sparse_sigma[n] ) );
  567. }
  568. for ( int n = 0; n < gaussians; n++ )
  569. {
  570. double tmpd;
  571. fin >> tmpd;
  572. priors.push_back ( tmpd );
  573. }
  574. fin.close();
  575. cerr << "reading GMM Data finished" << endl;
  576. return true;
  577. }
  578. void GMM::getParams ( VVector &mean, VVector &sSigma, vector<double> &p )
  579. {
  580. mean = mu;
  581. sSigma.resize ( gaussians );
  582. p.clear();
  583. for ( int i = 0; i < gaussians; i++ )
  584. {
  585. sSigma[i] = sparse_sigma[i];
  586. p.push_back ( priors[i] );
  587. }
  588. }
  589. void GMM::setCompareGM ( VVector mean, VVector sSigma, vector<double> p )
  590. {
  591. mu2 = mean;
  592. sparse_sigma2 = sSigma;
  593. priors2 = vector<double> ( p );
  594. }
  595. double GMM::kPPK ( NICE::Vector sigma1, NICE::Vector sigma2, NICE::Vector mu1, NICE::Vector mu2, double p )
  596. {
  597. double d = mu1.size();
  598. double det1 = 1.0;
  599. double det2 = 1.0;
  600. double det3 = 1.0;
  601. double eval = 0.0;
  602. for ( int i = 0; i < d; i++ )
  603. {
  604. det1 *= sigma1[i];
  605. det2 *= sigma2[i];
  606. double sigma = 1.0 / ( ( 1.0 / sigma1[i] + 1.0 / sigma2[i] ) * p );
  607. det3 *= sigma;
  608. double mu = p * ( mu1[i] * sigma1[i] + mu2[i] * sigma2[i] );
  609. eval += 0.5 * mu * sigma * mu - ( p * mu1[i] * mu1[i] ) / ( 2.0 * sigma1[i] ) - ( p * mu2[i] * mu2[i] ) / ( 2.0 * sigma2[i] );
  610. }
  611. return ( pow ( 2.0*M_PI, ( ( 1.0 - 2.0*p ) *d ) / 2.0 ) * pow ( det1, -p / 2.0 ) * pow ( det2, -p / 2.0 ) * pow ( det3, 0.5 ) * exp ( eval ) );
  612. }
  613. double GMM::compare()
  614. {
  615. double distkij = 0.0;
  616. double distkjj = 0.0;
  617. double distkii = 0.0;
  618. for ( int i = 0; i < gaussians; i++ )
  619. {
  620. for ( int j = 0; j < gaussians; j++ )
  621. {
  622. double kij = kPPK ( sparse_sigma[i], sparse_sigma2[j], mu[i], mu2[j], 0.5 );
  623. double kii = kPPK ( sparse_sigma[i], sparse_sigma[j], mu[i], mu[j], 0.5 );
  624. double kjj = kPPK ( sparse_sigma2[i], sparse_sigma2[j], mu2[i], mu2[j], 0.5 );
  625. kij = priors[i] * priors2[j] * kij;
  626. kii = priors[i] * priors[j] * kii;
  627. kjj = priors2[i] * priors2[j] * kjj;
  628. distkij += kij;
  629. distkii += kii;
  630. distkjj += kjj;
  631. }
  632. }
  633. return ( distkij / ( sqrt ( distkii ) *sqrt ( distkjj ) ) );
  634. }
  635. void GMM::comparing ( bool c )
  636. {
  637. comp = c;
  638. }