123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- /**
- * @file KMedian.h
- * @brief KMedian (aka K-medoid)
- * @author Alexander Freytag
- * @date 23-04-2013 (dd-mm-yyyy)
- */
- #ifndef KMEDIANINCLUDE
- #define KMEDIANINCLUDE
- #include <core/basics/Config.h>
- #include <core/vector/Distance.h>
- #include <core/vector/MatrixT.h>
- #include <core/vector/VectorT.h>
-
- #include "ClusterAlgorithm.h"
- namespace OBJREC {
- /**
- * @class KMedian
- * @brief KMedian (aka K-medoid)
- * @author Alexander Freytag
- * @date 23-04-2013 (dd-mm-yyyy)
- */
- class KMedian : public ClusterAlgorithm
- {
- protected:
-
- /************************
- *
- * protected variables
- *
- **************************/
-
- //! desired number of clusters
- int noClusters;
-
- //! specify which distance to use for calculating assignments
- std::string distanceType;
-
- //! the actual distance metric
- NICE::VectorDistance<double> *distancefunction;
-
- //! maximum difference between prototype-solutions of two iterations for convergence
- double d_minDelta;
-
- //! maximum number of iterations until convergence
- int i_maxIterations;
-
-
- /************************
- *
- * protected methods
- *
- **************************/
-
- //! compute the distance between two features using the specified distance metric
- double vectorDistance(const NICE::Vector &vector1, const NICE::Vector &vector2, uint distancetype);
-
- //! compute assignments of all given features wrt to the currently known prototypes (cluster medoids) == ~ E-step
- double compute_assignments ( const NICE::VVector & features,
- const NICE::VVector & prototypes,
- std::vector<int> & assignment );
- //! compute number of assignments for every currently found cluster
- double compute_weights ( const NICE::VVector & features,
- std::vector<double> & weights,
- std::vector<int> & assignment );
- //! compute the difference between prototypes of previous iteration and those currently found
- double compute_delta ( const NICE::VVector & oldprototypes,
- const NICE::VVector & prototypes );
- //! compute (update) prototypes given the current assignments == ~ M-step
- int compute_prototypes ( const NICE::VVector & features,
- NICE::VVector & prototypes,
- std::vector<double> & weights,
- const std::vector<int> & assignment );
- //! have an initial guess, i.e., randomly pick some features as initial cluster centroids
- void initial_guess ( const NICE::VVector & features,
- NICE::VVector & prototypes );
-
- //! give additional information for the current iteration
- void print_iteration ( int iterations,
- NICE::VVector & prototypes,
- double delta );
- public:
-
- /**
- * @brief simple constructor
- * @param _noClusters the number of clusters to be computed
- * @param _distanceMode a string specifying the distance function to be used (default: euclidean)
- */
- KMedian( const int & _noClusters , const std::string & _distanceMode="euclidean");
-
- /**
- * @brief standard constructor
- * @param conf config file specifying all relevant variable settings
- * @param _section name of the section within the configfile where the settings can be found (default: KMedian)
- */
- KMedian( const NICE::Config *conf, const std::string & _section = "KMedian");
-
-
- /** simple destructor */
- virtual ~KMedian();
-
- /**
- *@brief this is the actual method that performs the clustering for a given set of features
- *@author Alexander Freytag
- *@date 25-04-2013 (dd-mm-yyyy)
- *@param features input features to be clustered
- *@param prototypes computed prototypes (cluster medoids) for the given samples
- *@param weights number of assignments for every cluster
- *@param assignment explicite assignments of features to computed cluster medoids
- */
- void cluster ( const NICE::VVector & features,
- NICE::VVector & prototypes,
- std::vector<double> & weights,
- std::vector<int> & assignment );
- };
- } // namespace
- #endif
|