LinRegression.cpp 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. /**
  2. * @file LinRegression.cpp
  3. * @brief Algorithm for linear regression
  4. * @author Frank Prüfer
  5. * @date 08/13/2013
  6. */
  7. #include "vislearning/regression/linregression/LinRegression.h"
  8. #include "core/vector/Algorithms.h"
  9. #include "LinRegression.h"
  10. using namespace OBJREC;
  11. using namespace std;
  12. using namespace NICE;
  13. LinRegression::LinRegression()
  14. {
  15. dim = 0;
  16. }
  17. LinRegression::LinRegression(uint dimension)
  18. {
  19. dim = dimension;
  20. }
  21. LinRegression::LinRegression ( const LinRegression & src ) :
  22. RegressionAlgorithm ( src )
  23. {
  24. <<<<<<< HEAD
  25. dim = src.dim;
  26. =======
  27. dim = src.dim;
  28. modelParams = src.modelParams;
  29. >>>>>>> frank
  30. }
  31. LinRegression::~LinRegression()
  32. {
  33. }
  34. <<<<<<< HEAD
  35. LinRegression* LinRegression::clone ( void ) const
  36. {
  37. return new LinRegression(*this);
  38. }
  39. void LinRegression::teach ( const NICE::VVector & x, const NICE::Vector & y ){
  40. if (dim == 0) //dimension not specified via constructor
  41. {
  42. dim = x[0].size()+1; //use full dimension of data
  43. }
  44. cerr<<"dim: "<<dim<<endl;
  45. cerr<<"examples: "<<x.size()<<endl;
  46. for ( uint i = 0;i < dim;i++ ) //initialize vector of model parameters
  47. {
  48. =======
  49. void LinRegression::teach ( const NICE::VVector & x, const NICE::Vector & y )
  50. {
  51. if (dim == 0){ //dimension not specified via constructor
  52. dim = x[0].size()+1; //use full dimension of data
  53. }
  54. for ( uint i = 0;i < dim;i++ ){ //initialize vector of model parameters
  55. >>>>>>> frank
  56. modelParams.push_back(0.0);
  57. }
  58. if ( dim == 2 ) //two-dimensional least squares
  59. {
  60. double meanX;
  61. double meanY = y.Mean();
  62. double sumX = 0.0;
  63. for ( uint i = 0;i < x.size();i++ )
  64. sumX += x[i][0];
  65. meanX = sumX / (double)x.size();
  66. for ( uint i = 0; i < x.size(); i++ )
  67. modelParams[1] += x[i][0] * y[i];
  68. modelParams[1] -= x.size() * meanX * meanY;
  69. double tmp = 0.0;
  70. for ( uint i = 0; i < x.size(); i++ )
  71. tmp += x[i][0] * x[i][0];
  72. tmp -= x.size() * meanX * meanX;
  73. modelParams[1] /= tmp;
  74. modelParams[0] = meanY - modelParams[1] * meanX;
  75. }
  76. else { //N-dimensional least squares
  77. NICE::Matrix X, tmp, G;
  78. NICE::Vector params;
  79. x.toMatrix(X);
  80. NICE::Matrix Xtmp(X.rows(),X.cols()+1,1.0);
  81. // attach front column with ones
  82. for(uint row = 0;row<X.rows();row++)
  83. {
  84. for(uint col = 0;col<X.cols();col++)
  85. {
  86. Xtmp(row,col+1) = X(row,col);
  87. }
  88. }
  89. // modelParams =(X'X)^-1 * X'y
  90. NICE::Matrix tmpInv;
  91. NICE::Vector rhs;
  92. rhs.multiply(Xtmp,y,true);
  93. tmp.multiply(Xtmp,Xtmp,true);
  94. choleskyDecomp(tmp,G);
  95. choleskyInvert(G,tmpInv);
  96. params.multiply(tmpInv,rhs);
  97. modelParams = params.std_vector();
  98. }
  99. }
  100. std::vector<double> LinRegression::getModelParams()
  101. {
  102. return modelParams;
  103. }
  104. double LinRegression::predict ( const NICE::Vector & x )
  105. {
  106. double y;
  107. if ( dim == 2 ) //two-dimensional least squares
  108. {
  109. y = modelParams[0] + modelParams[1] * x[0];
  110. }
  111. else {
  112. // y = x * modelParams
  113. NICE::Vector nModel(modelParams);
  114. NICE:: Vector xTmp(1,1.0);
  115. xTmp.append(x);
  116. y = xTmp.scalarProduct(nModel);
  117. }
  118. return y;
  119. }