123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- /**
- * @file testImageNetBinaryGPBaseline.cpp
- * @brief perform ImageNet tests with binary tasks for OCC using the baseline GP
- * @author Alexander Lütz
- * @date 29-05-2012 (dd-mm-yyyy)
- */
- #include "core/basics/Config.h"
- #include "core/basics/Timer.h"
- #include "core/vector/SparseVectorT.h"
- #include "core/algebra/CholeskyRobust.h"
- #include "core/vector/Algorithms.h"
- #include "vislearning/cbaselib/ClassificationResults.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "fast-hik/tools.h"
- #include "fast-hik/MatFileIO.h"
- #include "fast-hik/ImageNetData.h"
- using namespace std;
- using namespace NICE;
- using namespace OBJREC;
- double measureDistance ( const NICE::SparseVector & a, const NICE::SparseVector & b, const double & sigma = 2.0)//, const bool & verbose = false)
- {
- double inner_sum(0.0);
- double d;
-
- //new version, where we needed on average 0.001707 s for each test sample
- NICE::SparseVector::const_iterator aIt = a.begin();
- NICE::SparseVector::const_iterator bIt = b.begin();
-
- while ( (aIt != a.end()) && (bIt != b.end()) )
- {
- if (aIt->first == bIt->first)
- {
- d = ( aIt->second - bIt->second );
- inner_sum += d * d;
- aIt++;
- bIt++;
- }
- else if ( aIt->first < bIt->first)
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- else
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- }
-
- //compute remaining values, if b reached the end but not a
- while (aIt != a.end())
- {
- inner_sum += aIt->second * aIt->second;
- aIt++;
- }
- //compute remaining values, if a reached the end but not b
- while (bIt != b.end())
- {
- inner_sum += bIt->second * bIt->second;
- bIt++;
- }
- inner_sum /= (2.0*sigma*sigma);
-
- return exp(-inner_sum); //expValue;
- }
- void readParameters(const string & filename, const int & size, NICE::Vector & parameterVector)
- {
- parameterVector.resize(size);
- parameterVector.set(0.0);
-
- ifstream is(filename.c_str());
- if ( !is.good() )
- fthrow(IOException, "Unable to read parameters.");
- //
- string tmp;
- int cnt(0);
- while (! is.eof())
- {
- is >> tmp;
- parameterVector[cnt] = atof(tmp.c_str());
- cnt++;
- }
- //
- is.close();
- }
- /**
- test the basic functionality of fast-hik hyperparameter optimization
- */
- int main (int argc, char **argv)
- {
- std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
- Config conf ( argc, argv );
- string resultsfile = conf.gS("main", "results", "results.txt" );
- double kernelSigma = conf.gD("main", "kernelSigma", 2.0);
- int nrOfExamplesPerClass = conf.gI("main", "nrOfExamplesPerClass", 50);
- nrOfExamplesPerClass = std::min(nrOfExamplesPerClass, 100); // we do not have more than 100 examples per class
- int nrOfClassesToConcidere = conf.gI("main", "nrOfClassesToConcidere", 1000);
- nrOfClassesToConcidere = std::min(nrOfClassesToConcidere, 1000); //we do not have more than 1000 classes
- string sigmaFile = conf.gS("main", "sigmaFile", "approxVarSigma.txt");
- string noiseFile = conf.gS("main", "noiseFile", "approxVarNoise.txt");
-
-
- NICE::Vector sigmaParas(nrOfClassesToConcidere,kernelSigma);
- NICE::Vector noiseParas(nrOfClassesToConcidere,0.0);
-
- readParameters(sigmaFile,nrOfClassesToConcidere, sigmaParas);
- readParameters(noiseFile,nrOfClassesToConcidere, noiseParas);
-
- std::vector<SparseVector> trainingData;
- NICE::Vector y;
-
- std::cerr << "Reading ImageNet data ..." << std::endl;
- bool imageNetLocal = conf.gB("main", "imageNetLocal" , false);
- string imageNetPath;
- if (imageNetLocal)
- imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/";
- else
- imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/";
- ImageNetData imageNetTrain ( imageNetPath + "demo/" );
- imageNetTrain.preloadData( "train", "training" );
- trainingData = imageNetTrain.getPreloadedData();
- y = imageNetTrain.getPreloadedLabels();
-
- std::cerr << "Reading of training data finished" << std::endl;
- std::cerr << "trainingData.size(): " << trainingData.size() << std::endl;
- std::cerr << "y.size(): " << y.size() << std::endl;
-
- std::cerr << "Reading ImageNet test data files (takes some seconds)..." << std::endl;
- ImageNetData imageNetTest ( imageNetPath + "demo/" );
- imageNetTest.preloadData ( "val", "testing" );
- imageNetTest.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" );
-
- double OverallPerformance(0.0);
-
- for (int cl = 0; cl < nrOfClassesToConcidere; cl++)
- {
- std::cerr << "run for class " << cl << std::endl;
- int positiveClass = cl+1;
- // ------------------------------ TRAINING ------------------------------
-
- kernelSigma = sigmaParas[cl];
-
- std::cerr << "using sigma: " << kernelSigma << " and noise " << noiseParas[cl] << std::endl;
- Timer tTrain;
- tTrain.start();
- NICE::Matrix kernelMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
-
- //now compute the kernelScores for every element
- double kernelScore(0.0);
- for (int i = cl*100; i < cl*100+nrOfExamplesPerClass; i++)
- {
- for (int j = i; j < cl*100+nrOfExamplesPerClass; j++)
- {
- kernelScore = measureDistance(trainingData[i],trainingData[j], kernelSigma);//optimalParameters[cl]);
- kernelMatrix(i-cl*100,j-cl*100) = kernelScore;
- if (i != j)
- kernelMatrix(j-cl*100,i-cl*100) = kernelScore;
- }
- }
-
- //adding some noise, if necessary
- if (noiseParas[cl] != 0.0)
- {
- kernelMatrix.addIdentity(noiseParas[cl]);
- }
- else
- {
- //zero was already set
- }
-
- //compute its inverse
- //noise is already added :)
- Timer tTrainPrecise;
- tTrainPrecise.start();
-
- CholeskyRobust cr ( false /* verbose*/, 0.0 /*noiseStep*/, false /* useCuda*/);
-
- NICE::Matrix choleskyMatrix (nrOfExamplesPerClass, nrOfExamplesPerClass, 0.0);
- cr.robustChol ( kernelMatrix, choleskyMatrix );
-
- tTrainPrecise.stop();
- std::cerr << "Precise time used for training class " << cl << ": " << tTrainPrecise.getLast() << std::endl;
-
- tTrain.stop();
- std::cerr << "Time used for training class " << cl << ": " << tTrain.getLast() << std::endl;
-
- std::cerr << "training done - now perform the evaluation" << std::endl;
- // ------------------------------ TESTING ------------------------------
-
- ClassificationResults results;
- std::cerr << "Classification step ... with " << imageNetTest.getNumPreloadedExamples() << " examples" << std::endl;
- ProgressBar pb;
- Timer tTest;
- tTest.start();
- Timer tTestSingle;
- double timeForSingleExamples(0.0);
- for ( uint i = 0 ; i < (uint)imageNetTest.getNumPreloadedExamples(); i++ )
- {
- pb.update ( imageNetTest.getNumPreloadedExamples() );
- //get the precomputed features
- const SparseVector & svec = imageNetTest.getPreloadedExample ( i );
-
- //compute (self-)similarities
- double kernelSelf (measureDistance(svec,svec, kernelSigma) );
- NICE::Vector kernelVector (nrOfExamplesPerClass, 0.0);
-
- for (int j = 0; j < nrOfExamplesPerClass; j++)
- {
- kernelVector[j] = measureDistance(trainingData[j+cl*100],svec, kernelSigma);
- }
-
- //compute the resulting score
- tTestSingle.start();
- NICE::Vector rightPart (nrOfExamplesPerClass);
- choleskySolveLargeScale ( choleskyMatrix, kernelVector, rightPart );
-
- double uncertainty = kernelSelf - kernelVector.scalarProduct ( rightPart );
- tTestSingle.stop();
- timeForSingleExamples += tTestSingle.getLast();
-
- //this is the standard score-object needed for the evaluation
- FullVector scores ( 2 );
- scores[0] = 0.0;
- scores[1] = 1.0 - uncertainty;
- ClassificationResult r ( scores[1]<0.5 ? 0 : 1, scores );
-
- // set ground truth label
- r.classno_groundtruth = (((int)imageNetTest.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0;
-
- //we could write the resulting score on the command line
- // std::cerr << "scores: " << std::endl;
- // scores >> std::cerr;
- //as well as the ground truth label
- // std::cerr << "gt: " << r.classno_groundtruth << " -- " << r.classno << std::endl;
-
- results.push_back ( r );
- }
-
- tTest.stop();
- std::cerr << "Time used for evaluating class " << cl << ": " << tTest.getLast() << std::endl;
-
- timeForSingleExamples/= imageNetTest.getNumPreloadedExamples();
- std::cerr << "Time used for evaluation single elements of class " << cl << " : " << timeForSingleExamples << std::endl;
-
- // we could also write the results to an external file. Note, that this file will be overwritten in every iteration
- // so if you want to store all results, you should add a suffix with the class number
- // std::cerr << "Writing results to " << resultsfile << std::endl;
- // results.writeWEKA ( resultsfile, 1 );
- double perfvalue = results.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
- std::cerr << "Performance: " << perfvalue << std::endl;
-
- OverallPerformance += perfvalue;
- }
-
- OverallPerformance /= nrOfClassesToConcidere;
-
- std::cerr << "overall performance: " << OverallPerformance << std::endl;
-
- return 0;
- }
|