read_data.c 171 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285
  1. /** @file read_data.c
  2. * Matlab MAT version 5 file functions
  3. * @ingroup MAT
  4. */
  5. /*
  6. * Copyright (C) 2005-2006 Christopher C. Hulbert
  7. *
  8. * This library is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * This library is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with this library; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /* FIXME: Implement Unicode support */
  23. #include <stdlib.h>
  24. #include <string.h>
  25. #include <stdio.h>
  26. #include <math.h>
  27. #include <time.h>
  28. #include "matio.h"
  29. #include "matio_private.h"
  30. #if defined(HAVE_ZLIB)
  31. # include <zlib.h>
  32. #endif
  33. /*
  34. * --------------------------------------------------------------------------
  35. * Routines to read data of any type into arrays of a specific type
  36. * --------------------------------------------------------------------------
  37. */
  38. /** @brief Reads data of type @c data_type into a double type
  39. *
  40. * Reads from the MAT file @c len elements of data type @c data_type storing
  41. * them as double's in @c data.
  42. * @ingroup mat_internal
  43. * @param mat MAT file pointer
  44. * @param data Pointer to store the output double values (len*sizeof(double))
  45. * @param data_type one of the @c matio_types enumerations which is the source
  46. * data type in the file
  47. * @param len Number of elements of type @c data_type to read from the file
  48. * @retval Number of bytes read from the file
  49. */
  50. int
  51. ReadDoubleData(mat_t *mat,double *data,int data_type,int len)
  52. {
  53. int bytesread = 0, data_size = 0, i;
  54. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  55. return 0;
  56. switch ( data_type ) {
  57. case MAT_T_DOUBLE:
  58. {
  59. data_size = sizeof(double);
  60. if ( mat->byteswap ) {
  61. bytesread += fread(data,data_size,len,mat->fp);
  62. for ( i = 0; i < len; i++ ) {
  63. (void)Mat_doubleSwap(data+i);
  64. }
  65. } else {
  66. bytesread += fread(data,data_size,len,mat->fp);
  67. }
  68. break;
  69. }
  70. case MAT_T_SINGLE:
  71. {
  72. float f;
  73. data_size = sizeof(float);
  74. if ( mat->byteswap ) {
  75. for ( i = 0; i < len; i++ ) {
  76. bytesread += fread(&f,data_size,1,mat->fp);
  77. data[i] = Mat_floatSwap(&f);
  78. }
  79. } else {
  80. for ( i = 0; i < len; i++ ) {
  81. bytesread += fread(&f,data_size,1,mat->fp);
  82. data[i] = f;
  83. }
  84. }
  85. break;
  86. }
  87. case MAT_T_INT32:
  88. {
  89. mat_int32_t i32;
  90. data_size = sizeof(mat_int32_t);
  91. if ( mat->byteswap ) {
  92. for ( i = 0; i < len; i++ ) {
  93. bytesread += fread(&i32,data_size,1,mat->fp);
  94. data[i] = Mat_int32Swap(&i32);
  95. }
  96. } else {
  97. for ( i = 0; i < len; i++ ) {
  98. bytesread += fread(&i32,data_size,1,mat->fp);
  99. data[i] = i32;
  100. }
  101. }
  102. break;
  103. }
  104. case MAT_T_UINT32:
  105. {
  106. mat_uint32_t ui32;
  107. data_size = sizeof(mat_uint32_t);
  108. if ( mat->byteswap ) {
  109. for ( i = 0; i < len; i++ ) {
  110. bytesread += fread(&ui32,data_size,1,mat->fp);
  111. data[i] = Mat_uint32Swap(&ui32);
  112. }
  113. } else {
  114. for ( i = 0; i < len; i++ ) {
  115. bytesread += fread(&ui32,data_size,1,mat->fp);
  116. data[i] = ui32;
  117. }
  118. }
  119. break;
  120. }
  121. case MAT_T_INT16:
  122. {
  123. mat_int16_t i16;
  124. data_size = sizeof(mat_int16_t);
  125. if ( mat->byteswap ) {
  126. for ( i = 0; i < len; i++ ) {
  127. bytesread += fread(&i16,data_size,1,mat->fp);
  128. data[i] = Mat_int16Swap(&i16);
  129. }
  130. } else {
  131. for ( i = 0; i < len; i++ ) {
  132. bytesread += fread(&i16,data_size,1,mat->fp);
  133. data[i] = i16;
  134. }
  135. }
  136. break;
  137. }
  138. case MAT_T_UINT16:
  139. {
  140. mat_uint16_t ui16;
  141. data_size = sizeof(mat_uint16_t);
  142. if ( mat->byteswap ) {
  143. for ( i = 0; i < len; i++ ) {
  144. bytesread += fread(&ui16,data_size,1,mat->fp);
  145. data[i] = Mat_uint16Swap(&ui16);
  146. }
  147. } else {
  148. for ( i = 0; i < len; i++ ) {
  149. bytesread += fread(&ui16,data_size,1,mat->fp);
  150. data[i] = ui16;
  151. }
  152. }
  153. break;
  154. }
  155. case MAT_T_INT8:
  156. {
  157. mat_int8_t i8;
  158. data_size = sizeof(mat_int8_t);
  159. if ( mat->byteswap ) {
  160. for ( i = 0; i < len; i++ ) {
  161. bytesread += fread(&i8,data_size,1,mat->fp);
  162. data[i] = i8;
  163. }
  164. } else {
  165. for ( i = 0; i < len; i++ ) {
  166. bytesread += fread(&i8,data_size,1,mat->fp);
  167. data[i] = i8;
  168. }
  169. }
  170. break;
  171. }
  172. case MAT_T_UINT8:
  173. {
  174. mat_uint8_t ui8;
  175. data_size = sizeof(mat_uint8_t);
  176. if ( mat->byteswap ) {
  177. for ( i = 0; i < len; i++ ) {
  178. bytesread += fread(&ui8,data_size,1,mat->fp);
  179. data[i] = ui8;
  180. }
  181. } else {
  182. for ( i = 0; i < len; i++ ) {
  183. bytesread += fread(&ui8,data_size,1,mat->fp);
  184. data[i] = ui8;
  185. }
  186. }
  187. break;
  188. }
  189. }
  190. bytesread *= data_size;
  191. return bytesread;
  192. }
  193. #if defined(HAVE_ZLIB)
  194. /** @brief Reads data of type @c data_type into a double type
  195. *
  196. * Reads from the MAT file @c len compressed elements of data type @c data_type
  197. * storing them as double's in @c data.
  198. * @ingroup mat_internal
  199. * @param mat MAT file pointer
  200. * @param z Pointer to the zlib stream for inflation
  201. * @param data Pointer to store the output double values (len*sizeof(double))
  202. * @param data_type one of the @c matio_types enumerations which is the source
  203. * data type in the file
  204. * @param len Number of elements of type @c data_type to read from the file
  205. * @retval Number of bytes read from the file
  206. */
  207. int
  208. ReadCompressedDoubleData(mat_t *mat,z_stream *z,double *data,
  209. int data_type,int len)
  210. {
  211. int nBytes = 0, data_size = 0, i;
  212. union _buf {
  213. #if SIZEOF_DOUBLE == 8
  214. double d[128];
  215. #elif SIZEOF_DOUBLE == 16
  216. double d[64];
  217. #endif
  218. float f[256];
  219. mat_int32_t i32[256];
  220. mat_uint32_t ui32[256];
  221. mat_int16_t i16[512];
  222. mat_uint16_t ui16[512];
  223. mat_int8_t i8[1024];
  224. mat_uint8_t ui8[1024];
  225. } buf;
  226. switch ( data_type ) {
  227. case MAT_T_DOUBLE:
  228. {
  229. data_size = sizeof(double);
  230. if ( mat->byteswap ) {
  231. InflateData(mat,z,data,len*data_size);
  232. for ( i = 0; i < len; i++ )
  233. (void)Mat_doubleSwap(data+i);
  234. } else {
  235. InflateData(mat,z,data,len*data_size);
  236. }
  237. break;
  238. }
  239. case MAT_T_INT32:
  240. {
  241. data_size = sizeof(mat_int32_t);
  242. if ( mat->byteswap ) {
  243. if ( len <= 256 ){
  244. InflateData(mat,z,buf.i32,len*data_size);
  245. for ( i = 0; i < len; i++ )
  246. data[i] = Mat_int32Swap(buf.i32+i);
  247. } else {
  248. int j;
  249. len -= 256;
  250. for ( i = 0; i < len; i+=256 ) {
  251. InflateData(mat,z,buf.i32,256*data_size);
  252. for ( j = 0; j < 256; j++ )
  253. data[i+j] = Mat_int32Swap(buf.i32+j);
  254. }
  255. len = len-(i-256);
  256. InflateData(mat,z,buf.i32,len*data_size);
  257. for ( j = 0; j < len; j++ )
  258. data[i+j] = Mat_int32Swap(buf.i32+j);
  259. }
  260. } else {
  261. if ( len <= 256 ){
  262. InflateData(mat,z,buf.i32,len*data_size);
  263. for ( i = 0; i < len; i++ )
  264. data[i] = buf.i32[i];
  265. } else {
  266. int j;
  267. len -= 256;
  268. for ( i = 0; i < len; i+=256 ) {
  269. InflateData(mat,z,buf.i32,256*data_size);
  270. for ( j = 0; j < 256; j++ )
  271. data[i+j] = buf.i32[j];
  272. }
  273. len = len-(i-256);
  274. InflateData(mat,z,buf.i32,len*data_size);
  275. for ( j = 0; j < len; j++ )
  276. data[i+j] = buf.i32[j];
  277. }
  278. }
  279. break;
  280. }
  281. case MAT_T_UINT32:
  282. {
  283. data_size = sizeof(mat_uint32_t);
  284. if ( mat->byteswap ) {
  285. if ( len <= 256 ){
  286. InflateData(mat,z,buf.ui32,len*data_size);
  287. for ( i = 0; i < len; i++ )
  288. data[i] = Mat_uint32Swap(buf.ui32+i);
  289. } else {
  290. int j;
  291. len -= 256;
  292. for ( i = 0; i < len; i+=256 ) {
  293. InflateData(mat,z,buf.ui32,256*data_size);
  294. for ( j = 0; j < 256; j++ )
  295. data[i+j] = Mat_uint32Swap(buf.ui32+j);
  296. }
  297. len = len-(i-256);
  298. InflateData(mat,z,buf.ui32,len*data_size);
  299. for ( j = 0; j < len; j++ )
  300. data[i+j] = Mat_uint32Swap(buf.ui32+j);
  301. }
  302. } else {
  303. if ( len <= 256 ) {
  304. InflateData(mat,z,buf.ui32,len*data_size);
  305. for ( i = 0; i < len; i++ )
  306. data[i] = buf.ui32[i];
  307. } else {
  308. int j;
  309. len -= 256;
  310. for ( i = 0; i < len; i+=256 ) {
  311. InflateData(mat,z,buf.ui32,256*data_size);
  312. for ( j = 0; j < 256; j++ )
  313. data[i+j] = buf.ui32[j];
  314. }
  315. len = len-(i-256);
  316. InflateData(mat,z,buf.ui32,len*data_size);
  317. for ( j = 0; j < len; j++ )
  318. data[i+j] = buf.ui32[j];
  319. }
  320. }
  321. break;
  322. }
  323. case MAT_T_INT16:
  324. {
  325. data_size = sizeof(mat_int16_t);
  326. if ( mat->byteswap ) {
  327. if ( len <= 512 ){
  328. InflateData(mat,z,buf.i16,len*data_size);
  329. for ( i = 0; i < len; i++ )
  330. data[i] = Mat_int16Swap(buf.i16+i);
  331. } else {
  332. int j;
  333. len -= 512;
  334. for ( i = 0; i < len; i+=512 ) {
  335. InflateData(mat,z,buf.i16,512*data_size);
  336. for ( j = 0; j < 512; j++ )
  337. data[i+j] = Mat_int16Swap(buf.i16+j);
  338. }
  339. len = len-(i-512);
  340. InflateData(mat,z,buf.i16,len*data_size);
  341. for ( j = 0; j < len; j++ )
  342. data[i+j] = Mat_int16Swap(buf.i16+j);
  343. }
  344. } else {
  345. if ( len <= 512 ) {
  346. InflateData(mat,z,buf.i16,len*data_size);
  347. for ( i = 0; i < len; i++ )
  348. data[i] = buf.i16[i];
  349. } else {
  350. int j;
  351. len -= 512;
  352. for ( i = 0; i < len; i+=512 ) {
  353. InflateData(mat,z,buf.i16,512*data_size);
  354. for ( j = 0; j < 512; j++ )
  355. data[i+j] = buf.i16[j];
  356. }
  357. len = len-(i-512);
  358. InflateData(mat,z,buf.i16,len*data_size);
  359. for ( j = 0; j < len; j++ )
  360. data[i+j] = buf.i16[j];
  361. }
  362. }
  363. break;
  364. }
  365. case MAT_T_UINT16:
  366. {
  367. data_size = sizeof(mat_uint16_t);
  368. if ( mat->byteswap ) {
  369. if ( len <= 512 ){
  370. InflateData(mat,z,buf.ui16,len*data_size);
  371. for ( i = 0; i < len; i++ )
  372. data[i] = Mat_uint16Swap(buf.ui16+i);
  373. } else {
  374. int j;
  375. len -= 512;
  376. for ( i = 0; i < len; i+=512 ) {
  377. InflateData(mat,z,buf.ui16,512*data_size);
  378. for ( j = 0; j < 512; j++ )
  379. data[i+j] = Mat_uint16Swap(buf.ui16+j);
  380. }
  381. len = len-(i-512);
  382. InflateData(mat,z,buf.ui16,len*data_size);
  383. for ( j = 0; j < len; j++ )
  384. data[i+j] = Mat_uint16Swap(buf.ui16+j);
  385. }
  386. } else {
  387. if ( len <= 512 ) {
  388. InflateData(mat,z,buf.ui16,len*data_size);
  389. for ( i = 0; i < len; i++ )
  390. data[i] = buf.ui16[i];
  391. } else {
  392. int j;
  393. len -= 512;
  394. for ( i = 0; i < len; i+=512 ) {
  395. InflateData(mat,z,buf.ui16,512*data_size);
  396. for ( j = 0; j < 512; j++ )
  397. data[i+j] = buf.ui16[j];
  398. }
  399. len = len-(i-512);
  400. InflateData(mat,z,buf.ui16,len*data_size);
  401. for ( j = 0; j < len; j++ )
  402. data[i+j] = buf.ui16[j];
  403. }
  404. }
  405. break;
  406. }
  407. case MAT_T_UINT8:
  408. {
  409. data_size = sizeof(mat_uint8_t);
  410. if ( len <= 1024 ) {
  411. InflateData(mat,z,buf.ui8,len*data_size);
  412. for ( i = 0; i < len; i++ )
  413. data[i] = buf.ui8[i];
  414. } else {
  415. int j;
  416. len -= 1024;
  417. for ( i = 0; i < len; i+=1024 ) {
  418. InflateData(mat,z,buf.ui8,1024*data_size);
  419. for ( j = 0; j < 1024; j++ )
  420. data[i+j] = buf.ui8[j];
  421. }
  422. len = len-(i-1024);
  423. InflateData(mat,z,buf.ui8,len*data_size);
  424. for ( j = 0; j < len; j++ )
  425. data[i+j] = buf.ui8[j];
  426. }
  427. break;
  428. }
  429. case MAT_T_INT8:
  430. {
  431. data_size = sizeof(mat_int8_t);
  432. if ( len <= 1024 ) {
  433. InflateData(mat,z,buf.i8,len*data_size);
  434. for ( i = 0; i < len; i++ )
  435. data[i] = buf.i8[i];
  436. } else {
  437. int j;
  438. len -= 1024;
  439. for ( i = 0; i < len; i+=1024 ) {
  440. InflateData(mat,z,buf.i8,1024*data_size);
  441. for ( j = 0; j < 1024; j++ )
  442. data[i+j] = buf.i8[j];
  443. }
  444. len = len-(i-1024);
  445. InflateData(mat,z,buf.i8,len*data_size);
  446. for ( j = 0; j < len; j++ )
  447. data[i+j] = buf.i8[j];
  448. }
  449. break;
  450. }
  451. }
  452. nBytes = len*data_size;
  453. return nBytes;
  454. }
  455. #endif
  456. /** @brief Reads data of type @c data_type into a float type
  457. *
  458. * Reads from the MAT file @c len elements of data type @c data_type storing
  459. * them as float's in @c data.
  460. * @ingroup mat_internal
  461. * @param mat MAT file pointer
  462. * @param data Pointer to store the output float values (len*sizeof(float))
  463. * @param data_type one of the @c matio_types enumerations which is the source
  464. * data type in the file
  465. * @param len Number of elements of type @c data_type to read from the file
  466. * @retval Number of bytes read from the file
  467. */
  468. int
  469. ReadSingleData(mat_t *mat,float *data,int data_type,int len)
  470. {
  471. int bytesread = 0, data_size = 0, i;
  472. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  473. return 0;
  474. switch ( data_type ) {
  475. case MAT_T_DOUBLE:
  476. {
  477. double d;
  478. data_size = sizeof(double);
  479. if ( mat->byteswap ) {
  480. for ( i = 0; i < len; i++ ) {
  481. bytesread += fread(&d,data_size,1,mat->fp);
  482. data[i] = Mat_doubleSwap(&d);
  483. }
  484. } else {
  485. for ( i = 0; i < len; i++ ) {
  486. bytesread += fread(&d,data_size,1,mat->fp);
  487. data[i] = d;
  488. }
  489. }
  490. break;
  491. }
  492. case MAT_T_SINGLE:
  493. {
  494. float f;
  495. data_size = sizeof(float);
  496. if ( mat->byteswap ) {
  497. for ( i = 0; i < len; i++ ) {
  498. bytesread += fread(&f,data_size,1,mat->fp);
  499. data[i] = Mat_floatSwap(&f);
  500. }
  501. } else {
  502. for ( i = 0; i < len; i++ ) {
  503. bytesread += fread(&f,data_size,1,mat->fp);
  504. data[i] = f;
  505. }
  506. }
  507. break;
  508. }
  509. case MAT_T_INT32:
  510. {
  511. mat_int32_t i32;
  512. data_size = sizeof(mat_int32_t);
  513. if ( mat->byteswap ) {
  514. for ( i = 0; i < len; i++ ) {
  515. bytesread += fread(&i32,data_size,1,mat->fp);
  516. data[i] = Mat_int32Swap(&i32);
  517. }
  518. } else {
  519. for ( i = 0; i < len; i++ ) {
  520. bytesread += fread(&i32,data_size,1,mat->fp);
  521. data[i] = i32;
  522. }
  523. }
  524. break;
  525. }
  526. case MAT_T_UINT32:
  527. {
  528. mat_uint32_t ui32;
  529. data_size = sizeof(mat_uint32_t);
  530. if ( mat->byteswap ) {
  531. for ( i = 0; i < len; i++ ) {
  532. bytesread += fread(&ui32,data_size,1,mat->fp);
  533. data[i] = Mat_uint32Swap(&ui32);
  534. }
  535. } else {
  536. for ( i = 0; i < len; i++ ) {
  537. bytesread += fread(&ui32,data_size,1,mat->fp);
  538. data[i] = ui32;
  539. }
  540. }
  541. break;
  542. }
  543. case MAT_T_INT16:
  544. {
  545. mat_int16_t i16;
  546. data_size = sizeof(mat_int16_t);
  547. if ( mat->byteswap ) {
  548. for ( i = 0; i < len; i++ ) {
  549. bytesread += fread(&i16,data_size,1,mat->fp);
  550. data[i] = Mat_int16Swap(&i16);
  551. }
  552. } else {
  553. for ( i = 0; i < len; i++ ) {
  554. bytesread += fread(&i16,data_size,1,mat->fp);
  555. data[i] = i16;
  556. }
  557. }
  558. break;
  559. }
  560. case MAT_T_UINT16:
  561. {
  562. mat_uint16_t ui16;
  563. data_size = sizeof(mat_uint16_t);
  564. if ( mat->byteswap ) {
  565. for ( i = 0; i < len; i++ ) {
  566. bytesread += fread(&ui16,data_size,1,mat->fp);
  567. data[i] = Mat_uint16Swap(&ui16);
  568. }
  569. } else {
  570. for ( i = 0; i < len; i++ ) {
  571. bytesread += fread(&ui16,data_size,1,mat->fp);
  572. data[i] = ui16;
  573. }
  574. }
  575. break;
  576. }
  577. case MAT_T_INT8:
  578. {
  579. mat_int8_t i8;
  580. data_size = sizeof(mat_int8_t);
  581. if ( mat->byteswap ) {
  582. for ( i = 0; i < len; i++ ) {
  583. bytesread += fread(&i8,data_size,1,mat->fp);
  584. data[i] = i8;
  585. }
  586. } else {
  587. for ( i = 0; i < len; i++ ) {
  588. bytesread += fread(&i8,data_size,1,mat->fp);
  589. data[i] = i8;
  590. }
  591. }
  592. break;
  593. }
  594. case MAT_T_UINT8:
  595. {
  596. mat_uint8_t ui8;
  597. data_size = sizeof(mat_uint8_t);
  598. if ( mat->byteswap ) {
  599. for ( i = 0; i < len; i++ ) {
  600. bytesread += fread(&ui8,data_size,1,mat->fp);
  601. data[i] = ui8;
  602. }
  603. } else {
  604. for ( i = 0; i < len; i++ ) {
  605. bytesread += fread(&ui8,data_size,1,mat->fp);
  606. data[i] = ui8;
  607. }
  608. }
  609. break;
  610. }
  611. }
  612. bytesread *= data_size;
  613. return bytesread;
  614. }
  615. #if defined(HAVE_ZLIB)
  616. /** @brief Reads data of type @c data_type into a float type
  617. *
  618. * Reads from the MAT file @c len compressed elements of data type @c data_type
  619. * storing them as float's in @c data.
  620. * @ingroup mat_internal
  621. * @param mat MAT file pointer
  622. * @param z Pointer to the zlib stream for inflation
  623. * @param data Pointer to store the output float values (len*sizeof(float))
  624. * @param data_type one of the @c matio_types enumerations which is the source
  625. * data type in the file
  626. * @param len Number of elements of type @c data_type to read from the file
  627. * @retval Number of bytes read from the file
  628. */
  629. int
  630. ReadCompressedSingleData(mat_t *mat,z_stream *z,float *data,
  631. int data_type,int len)
  632. {
  633. int nBytes = 0, data_size = 0, i;
  634. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  635. return 0;
  636. switch ( data_type ) {
  637. case MAT_T_DOUBLE:
  638. {
  639. double d;
  640. data_size = sizeof(double);
  641. if ( mat->byteswap ) {
  642. for ( i = 0; i < len; i++ ) {
  643. InflateData(mat,z,&d,data_size);
  644. data[i] = Mat_doubleSwap(&d);
  645. }
  646. } else {
  647. for ( i = 0; i < len; i++ ) {
  648. InflateData(mat,z,&d,data_size);
  649. data[i] = d;
  650. }
  651. }
  652. break;
  653. }
  654. case MAT_T_SINGLE:
  655. {
  656. float f;
  657. data_size = sizeof(float);
  658. if ( mat->byteswap ) {
  659. for ( i = 0; i < len; i++ ) {
  660. InflateData(mat,z,&f,data_size);
  661. data[i] = Mat_floatSwap(&f);
  662. }
  663. } else {
  664. for ( i = 0; i < len; i++ ) {
  665. InflateData(mat,z,data+i,data_size);
  666. }
  667. }
  668. break;
  669. }
  670. case MAT_T_INT32:
  671. {
  672. mat_int32_t i32;
  673. data_size = sizeof(mat_int32_t);
  674. if ( mat->byteswap ) {
  675. for ( i = 0; i < len; i++ ) {
  676. InflateData(mat,z,&i32,data_size);
  677. data[i] = Mat_int32Swap(&i32);
  678. }
  679. } else {
  680. for ( i = 0; i < len; i++ ) {
  681. InflateData(mat,z,&i32,data_size);
  682. data[i] = i32;
  683. }
  684. }
  685. break;
  686. }
  687. case MAT_T_UINT32:
  688. {
  689. mat_uint32_t ui32;
  690. data_size = sizeof(mat_uint32_t);
  691. if ( mat->byteswap ) {
  692. for ( i = 0; i < len; i++ ) {
  693. InflateData(mat,z,&ui32,data_size);
  694. data[i] = Mat_uint32Swap(&ui32);
  695. }
  696. } else {
  697. for ( i = 0; i < len; i++ ) {
  698. InflateData(mat,z,&ui32,data_size);
  699. data[i] = ui32;
  700. }
  701. }
  702. break;
  703. }
  704. case MAT_T_INT16:
  705. {
  706. mat_int16_t i16;
  707. data_size = sizeof(mat_int16_t);
  708. if ( mat->byteswap ) {
  709. for ( i = 0; i < len; i++ ) {
  710. InflateData(mat,z,&i16,data_size);
  711. data[i] = Mat_int16Swap(&i16);
  712. }
  713. } else {
  714. for ( i = 0; i < len; i++ ) {
  715. InflateData(mat,z,&i16,data_size);
  716. data[i] = i16;
  717. }
  718. }
  719. break;
  720. }
  721. case MAT_T_UINT16:
  722. {
  723. mat_uint16_t ui16;
  724. data_size = sizeof(mat_uint16_t);
  725. if ( mat->byteswap ) {
  726. for ( i = 0; i < len; i++ ) {
  727. InflateData(mat,z,&ui16,data_size);
  728. data[i] = Mat_uint16Swap(&ui16);
  729. }
  730. } else {
  731. for ( i = 0; i < len; i++ ) {
  732. InflateData(mat,z,&ui16,data_size);
  733. data[i] = ui16;
  734. }
  735. }
  736. break;
  737. }
  738. case MAT_T_UINT8:
  739. {
  740. mat_uint8_t ui8;
  741. data_size = sizeof(mat_uint8_t);
  742. for ( i = 0; i < len; i++ ) {
  743. InflateData(mat,z,&ui8,data_size);
  744. data[i] = ui8;
  745. }
  746. break;
  747. }
  748. case MAT_T_INT8:
  749. {
  750. mat_int8_t i8;
  751. data_size = sizeof(mat_int8_t);
  752. for ( i = 0; i < len; i++ ) {
  753. InflateData(mat,z,&i8,data_size);
  754. data[i] = i8;
  755. }
  756. break;
  757. }
  758. }
  759. nBytes = len*data_size;
  760. return nBytes;
  761. }
  762. #endif
  763. #ifdef HAVE_MAT_INT64_T
  764. /** @brief Reads data of type @c data_type into a signed 64-bit integer type
  765. *
  766. * Reads from the MAT file @c len elements of data type @c data_type storing
  767. * them as signed 64-bit integers in @c data.
  768. * @ingroup mat_internal
  769. * @param mat MAT file pointer
  770. * @param data Pointer to store the output signed 64-bit integer values
  771. * (len*sizeof(mat_int64_t))
  772. * @param data_type one of the @c matio_types enumerations which is the source
  773. * data type in the file
  774. * @param len Number of elements of type @c data_type to read from the file
  775. * @retval Number of bytes read from the file
  776. */
  777. int
  778. ReadInt64Data(mat_t *mat,mat_int64_t *data,int data_type,int len)
  779. {
  780. int bytesread = 0, data_size = 0, i;
  781. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  782. return 0;
  783. switch ( data_type ) {
  784. case MAT_T_DOUBLE:
  785. {
  786. double d;
  787. data_size = sizeof(double);
  788. if ( mat->byteswap ) {
  789. for ( i = 0; i < len; i++ ) {
  790. bytesread += fread(&d,data_size,1,mat->fp);
  791. data[i] = Mat_doubleSwap(&d);
  792. }
  793. } else {
  794. for ( i = 0; i < len; i++ ) {
  795. bytesread += fread(&d,data_size,1,mat->fp);
  796. data[i] = d;
  797. }
  798. }
  799. break;
  800. }
  801. case MAT_T_SINGLE:
  802. {
  803. float f;
  804. data_size = sizeof(float);
  805. if ( mat->byteswap ) {
  806. for ( i = 0; i < len; i++ ) {
  807. bytesread += fread(&f,data_size,1,mat->fp);
  808. data[i] = Mat_floatSwap(&f);
  809. }
  810. } else {
  811. for ( i = 0; i < len; i++ ) {
  812. bytesread += fread(&f,data_size,1,mat->fp);
  813. data[i] = f;
  814. }
  815. }
  816. break;
  817. }
  818. case MAT_T_INT64:
  819. {
  820. mat_int64_t i64;
  821. data_size = sizeof(mat_int64_t);
  822. if ( mat->byteswap ) {
  823. for ( i = 0; i < len; i++ ) {
  824. bytesread += fread(&i64,data_size,1,mat->fp);
  825. data[i] = Mat_int64Swap(&i64);
  826. }
  827. } else {
  828. for ( i = 0; i < len; i++ ) {
  829. bytesread += fread(&i64,data_size,1,mat->fp);
  830. data[i] = i64;
  831. }
  832. }
  833. break;
  834. }
  835. case MAT_T_UINT64:
  836. {
  837. mat_uint64_t ui64;
  838. data_size = sizeof(mat_uint64_t);
  839. if ( mat->byteswap ) {
  840. for ( i = 0; i < len; i++ ) {
  841. bytesread += fread(&ui64,data_size,1,mat->fp);
  842. data[i] = Mat_uint64Swap(&ui64);
  843. }
  844. } else {
  845. for ( i = 0; i < len; i++ ) {
  846. bytesread += fread(&ui64,data_size,1,mat->fp);
  847. data[i] = ui64;
  848. }
  849. }
  850. break;
  851. }
  852. case MAT_T_INT32:
  853. {
  854. mat_int32_t i32;
  855. data_size = sizeof(mat_int32_t);
  856. if ( mat->byteswap ) {
  857. for ( i = 0; i < len; i++ ) {
  858. bytesread += fread(&i32,data_size,1,mat->fp);
  859. data[i] = Mat_int32Swap(&i32);
  860. }
  861. } else {
  862. for ( i = 0; i < len; i++ ) {
  863. bytesread += fread(&i32,data_size,1,mat->fp);
  864. data[i] = i32;
  865. }
  866. }
  867. break;
  868. }
  869. case MAT_T_UINT32:
  870. {
  871. mat_uint32_t ui32;
  872. data_size = sizeof(mat_uint32_t);
  873. if ( mat->byteswap ) {
  874. for ( i = 0; i < len; i++ ) {
  875. bytesread += fread(&ui32,data_size,1,mat->fp);
  876. data[i] = Mat_uint32Swap(&ui32);
  877. }
  878. } else {
  879. for ( i = 0; i < len; i++ ) {
  880. bytesread += fread(&ui32,data_size,1,mat->fp);
  881. data[i] = ui32;
  882. }
  883. }
  884. break;
  885. }
  886. case MAT_T_INT16:
  887. {
  888. mat_int16_t i16;
  889. data_size = sizeof(mat_int16_t);
  890. if ( mat->byteswap ) {
  891. for ( i = 0; i < len; i++ ) {
  892. bytesread += fread(&i16,data_size,1,mat->fp);
  893. data[i] = Mat_int16Swap(&i16);
  894. }
  895. } else {
  896. for ( i = 0; i < len; i++ ) {
  897. bytesread += fread(&i16,data_size,1,mat->fp);
  898. data[i] = i16;
  899. }
  900. }
  901. break;
  902. }
  903. case MAT_T_UINT16:
  904. {
  905. mat_uint16_t ui16;
  906. data_size = sizeof(mat_uint16_t);
  907. if ( mat->byteswap ) {
  908. for ( i = 0; i < len; i++ ) {
  909. bytesread += fread(&ui16,data_size,1,mat->fp);
  910. data[i] = Mat_uint16Swap(&ui16);
  911. }
  912. } else {
  913. for ( i = 0; i < len; i++ ) {
  914. bytesread += fread(&ui16,data_size,1,mat->fp);
  915. data[i] = ui16;
  916. }
  917. }
  918. break;
  919. }
  920. case MAT_T_INT8:
  921. {
  922. mat_int8_t i8;
  923. data_size = sizeof(mat_int8_t);
  924. if ( mat->byteswap ) {
  925. for ( i = 0; i < len; i++ ) {
  926. bytesread += fread(&i8,data_size,1,mat->fp);
  927. data[i] = i8;
  928. }
  929. } else {
  930. for ( i = 0; i < len; i++ ) {
  931. bytesread += fread(&i8,data_size,1,mat->fp);
  932. data[i] = i8;
  933. }
  934. }
  935. break;
  936. }
  937. case MAT_T_UINT8:
  938. {
  939. mat_uint8_t ui8;
  940. data_size = sizeof(mat_uint8_t);
  941. if ( mat->byteswap ) {
  942. for ( i = 0; i < len; i++ ) {
  943. bytesread += fread(&ui8,data_size,1,mat->fp);
  944. data[i] = ui8;
  945. }
  946. } else {
  947. for ( i = 0; i < len; i++ ) {
  948. bytesread += fread(&ui8,data_size,1,mat->fp);
  949. data[i] = ui8;
  950. }
  951. }
  952. break;
  953. }
  954. }
  955. bytesread *= data_size;
  956. return bytesread;
  957. }
  958. #if defined(HAVE_ZLIB)
  959. /** @brief Reads data of type @c data_type into a signed 64-bit integer type
  960. *
  961. * Reads from the MAT file @c len compressed elements of data type @c data_type
  962. * storing them as signed 64-bit integers in @c data.
  963. * @ingroup mat_internal
  964. * @param mat MAT file pointer
  965. * @param z Pointer to the zlib stream for inflation
  966. * @param data Pointer to store the output signed 64-bit integer values
  967. * (len*sizeof(mat_int64_t))
  968. * @param data_type one of the @c matio_types enumerations which is the source
  969. * data type in the file
  970. * @param len Number of elements of type @c data_type to read from the file
  971. * @retval Number of bytes read from the file
  972. */
  973. int
  974. ReadCompressedInt64Data(mat_t *mat,z_stream *z,mat_int64_t *data,
  975. int data_type,int len)
  976. {
  977. int nBytes = 0, data_size = 0, i;
  978. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  979. return 0;
  980. switch ( data_type ) {
  981. case MAT_T_DOUBLE:
  982. {
  983. double d;
  984. data_size = sizeof(double);
  985. if ( mat->byteswap ) {
  986. for ( i = 0; i < len; i++ ) {
  987. InflateData(mat,z,&d,data_size);
  988. data[i] = Mat_doubleSwap(&d);
  989. }
  990. } else {
  991. for ( i = 0; i < len; i++ ) {
  992. InflateData(mat,z,&d,data_size);
  993. data[i] = d;
  994. }
  995. }
  996. break;
  997. }
  998. case MAT_T_SINGLE:
  999. {
  1000. float f;
  1001. data_size = sizeof(float);
  1002. if ( mat->byteswap ) {
  1003. for ( i = 0; i < len; i++ ) {
  1004. InflateData(mat,z,&f,data_size);
  1005. data[i] = Mat_floatSwap(&f);
  1006. }
  1007. } else {
  1008. for ( i = 0; i < len; i++ ) {
  1009. InflateData(mat,z,&f,data_size);
  1010. data[i] = f;
  1011. }
  1012. }
  1013. break;
  1014. }
  1015. case MAT_T_INT64:
  1016. {
  1017. mat_int64_t i64;
  1018. data_size = sizeof(mat_int64_t);
  1019. if ( mat->byteswap ) {
  1020. for ( i = 0; i < len; i++ ) {
  1021. InflateData(mat,z,&i64,data_size);
  1022. data[i] = Mat_int64Swap(&i64);
  1023. }
  1024. } else {
  1025. for ( i = 0; i < len; i++ ) {
  1026. InflateData(mat,z,&i64,data_size);
  1027. data[i] = i64;
  1028. }
  1029. }
  1030. break;
  1031. }
  1032. case MAT_T_UINT64:
  1033. {
  1034. mat_uint64_t ui64;
  1035. data_size = sizeof(mat_uint64_t);
  1036. if ( mat->byteswap ) {
  1037. for ( i = 0; i < len; i++ ) {
  1038. InflateData(mat,z,&ui64,data_size);
  1039. data[i] = Mat_uint64Swap(&ui64);
  1040. }
  1041. } else {
  1042. for ( i = 0; i < len; i++ ) {
  1043. InflateData(mat,z,&ui64,data_size);
  1044. data[i] = ui64;
  1045. }
  1046. }
  1047. break;
  1048. }
  1049. case MAT_T_INT32:
  1050. {
  1051. mat_int32_t i32;
  1052. data_size = sizeof(mat_int32_t);
  1053. if ( mat->byteswap ) {
  1054. for ( i = 0; i < len; i++ ) {
  1055. InflateData(mat,z,&i32,data_size);
  1056. data[i] = Mat_int32Swap(&i32);
  1057. }
  1058. } else {
  1059. for ( i = 0; i < len; i++ ) {
  1060. InflateData(mat,z,&i32,data_size);
  1061. data[i] = i32;
  1062. }
  1063. }
  1064. break;
  1065. }
  1066. case MAT_T_UINT32:
  1067. {
  1068. mat_uint32_t ui32;
  1069. data_size = sizeof(mat_uint32_t);
  1070. if ( mat->byteswap ) {
  1071. for ( i = 0; i < len; i++ ) {
  1072. InflateData(mat,z,&ui32,data_size);
  1073. data[i] = Mat_uint32Swap(&ui32);
  1074. }
  1075. } else {
  1076. for ( i = 0; i < len; i++ ) {
  1077. InflateData(mat,z,&ui32,data_size);
  1078. data[i] = ui32;
  1079. }
  1080. }
  1081. break;
  1082. }
  1083. case MAT_T_INT16:
  1084. {
  1085. mat_int16_t i16;
  1086. data_size = sizeof(mat_int16_t);
  1087. if ( mat->byteswap ) {
  1088. for ( i = 0; i < len; i++ ) {
  1089. InflateData(mat,z,&i16,data_size);
  1090. data[i] = Mat_int16Swap(&i16);
  1091. }
  1092. } else {
  1093. for ( i = 0; i < len; i++ ) {
  1094. InflateData(mat,z,&i16,data_size);
  1095. data[i] = i16;
  1096. }
  1097. }
  1098. break;
  1099. }
  1100. case MAT_T_UINT16:
  1101. {
  1102. mat_uint16_t ui16;
  1103. data_size = sizeof(mat_uint16_t);
  1104. if ( mat->byteswap ) {
  1105. for ( i = 0; i < len; i++ ) {
  1106. InflateData(mat,z,&ui16,data_size);
  1107. data[i] = Mat_uint16Swap(&ui16);
  1108. }
  1109. } else {
  1110. for ( i = 0; i < len; i++ ) {
  1111. InflateData(mat,z,&ui16,data_size);
  1112. data[i] = ui16;
  1113. }
  1114. }
  1115. break;
  1116. }
  1117. case MAT_T_UINT8:
  1118. {
  1119. mat_uint8_t ui8;
  1120. data_size = sizeof(mat_uint8_t);
  1121. for ( i = 0; i < len; i++ ) {
  1122. InflateData(mat,z,&ui8,data_size);
  1123. data[i] = ui8;
  1124. }
  1125. break;
  1126. }
  1127. case MAT_T_INT8:
  1128. {
  1129. mat_int8_t i8;
  1130. data_size = sizeof(mat_int8_t);
  1131. for ( i = 0; i < len; i++ ) {
  1132. InflateData(mat,z,&i8,data_size);
  1133. data[i] = i8;
  1134. }
  1135. break;
  1136. }
  1137. }
  1138. nBytes = len*data_size;
  1139. return nBytes;
  1140. }
  1141. #endif
  1142. #endif /* HAVE_MAT_INT64_T */
  1143. #ifdef HAVE_MAT_UINT64_T
  1144. /** @brief Reads data of type @c data_type into an unsigned 64-bit integer type
  1145. *
  1146. * Reads from the MAT file @c len elements of data type @c data_type storing
  1147. * them as unsigned 64-bit integers in @c data.
  1148. * @ingroup mat_internal
  1149. * @param mat MAT file pointer
  1150. * @param data Pointer to store the output unsigned 64-bit integer values
  1151. * (len*sizeof(mat_uint64_t))
  1152. * @param data_type one of the @c matio_types enumerations which is the source
  1153. * data type in the file
  1154. * @param len Number of elements of type @c data_type to read from the file
  1155. * @retval Number of bytes read from the file
  1156. */
  1157. int
  1158. ReadUInt64Data(mat_t *mat,mat_uint64_t *data,int data_type,int len)
  1159. {
  1160. int bytesread = 0, data_size = 0, i;
  1161. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  1162. return 0;
  1163. switch ( data_type ) {
  1164. case MAT_T_DOUBLE:
  1165. {
  1166. double d;
  1167. data_size = sizeof(double);
  1168. if ( mat->byteswap ) {
  1169. for ( i = 0; i < len; i++ ) {
  1170. bytesread += fread(&d,data_size,1,mat->fp);
  1171. data[i] = Mat_doubleSwap(&d);
  1172. }
  1173. } else {
  1174. for ( i = 0; i < len; i++ ) {
  1175. bytesread += fread(&d,data_size,1,mat->fp);
  1176. data[i] = d;
  1177. }
  1178. }
  1179. break;
  1180. }
  1181. case MAT_T_SINGLE:
  1182. {
  1183. float f;
  1184. data_size = sizeof(float);
  1185. if ( mat->byteswap ) {
  1186. for ( i = 0; i < len; i++ ) {
  1187. bytesread += fread(&f,data_size,1,mat->fp);
  1188. data[i] = Mat_floatSwap(&f);
  1189. }
  1190. } else {
  1191. for ( i = 0; i < len; i++ ) {
  1192. bytesread += fread(&f,data_size,1,mat->fp);
  1193. data[i] = f;
  1194. }
  1195. }
  1196. break;
  1197. }
  1198. case MAT_T_INT64:
  1199. {
  1200. mat_int64_t i64;
  1201. data_size = sizeof(mat_int64_t);
  1202. if ( mat->byteswap ) {
  1203. for ( i = 0; i < len; i++ ) {
  1204. bytesread += fread(&i64,data_size,1,mat->fp);
  1205. data[i] = Mat_int64Swap(&i64);
  1206. }
  1207. } else {
  1208. for ( i = 0; i < len; i++ ) {
  1209. bytesread += fread(&i64,data_size,1,mat->fp);
  1210. data[i] = i64;
  1211. }
  1212. }
  1213. break;
  1214. }
  1215. case MAT_T_UINT64:
  1216. {
  1217. mat_uint64_t ui64;
  1218. data_size = sizeof(mat_uint64_t);
  1219. if ( mat->byteswap ) {
  1220. for ( i = 0; i < len; i++ ) {
  1221. bytesread += fread(&ui64,data_size,1,mat->fp);
  1222. data[i] = Mat_uint64Swap(&ui64);
  1223. }
  1224. } else {
  1225. for ( i = 0; i < len; i++ ) {
  1226. bytesread += fread(&ui64,data_size,1,mat->fp);
  1227. data[i] = ui64;
  1228. }
  1229. }
  1230. break;
  1231. }
  1232. case MAT_T_INT32:
  1233. {
  1234. mat_int32_t i32;
  1235. data_size = sizeof(mat_int32_t);
  1236. if ( mat->byteswap ) {
  1237. for ( i = 0; i < len; i++ ) {
  1238. bytesread += fread(&i32,data_size,1,mat->fp);
  1239. data[i] = Mat_int32Swap(&i32);
  1240. }
  1241. } else {
  1242. for ( i = 0; i < len; i++ ) {
  1243. bytesread += fread(&i32,data_size,1,mat->fp);
  1244. data[i] = i32;
  1245. }
  1246. }
  1247. break;
  1248. }
  1249. case MAT_T_UINT32:
  1250. {
  1251. mat_uint32_t ui32;
  1252. data_size = sizeof(mat_uint32_t);
  1253. if ( mat->byteswap ) {
  1254. for ( i = 0; i < len; i++ ) {
  1255. bytesread += fread(&ui32,data_size,1,mat->fp);
  1256. data[i] = Mat_uint32Swap(&ui32);
  1257. }
  1258. } else {
  1259. for ( i = 0; i < len; i++ ) {
  1260. bytesread += fread(&ui32,data_size,1,mat->fp);
  1261. data[i] = ui32;
  1262. }
  1263. }
  1264. break;
  1265. }
  1266. case MAT_T_INT16:
  1267. {
  1268. mat_int16_t i16;
  1269. data_size = sizeof(mat_int16_t);
  1270. if ( mat->byteswap ) {
  1271. for ( i = 0; i < len; i++ ) {
  1272. bytesread += fread(&i16,data_size,1,mat->fp);
  1273. data[i] = Mat_int16Swap(&i16);
  1274. }
  1275. } else {
  1276. for ( i = 0; i < len; i++ ) {
  1277. bytesread += fread(&i16,data_size,1,mat->fp);
  1278. data[i] = i16;
  1279. }
  1280. }
  1281. break;
  1282. }
  1283. case MAT_T_UINT16:
  1284. {
  1285. mat_uint16_t ui16;
  1286. data_size = sizeof(mat_uint16_t);
  1287. if ( mat->byteswap ) {
  1288. for ( i = 0; i < len; i++ ) {
  1289. bytesread += fread(&ui16,data_size,1,mat->fp);
  1290. data[i] = Mat_uint16Swap(&ui16);
  1291. }
  1292. } else {
  1293. for ( i = 0; i < len; i++ ) {
  1294. bytesread += fread(&ui16,data_size,1,mat->fp);
  1295. data[i] = ui16;
  1296. }
  1297. }
  1298. break;
  1299. }
  1300. case MAT_T_INT8:
  1301. {
  1302. mat_int8_t i8;
  1303. data_size = sizeof(mat_int8_t);
  1304. if ( mat->byteswap ) {
  1305. for ( i = 0; i < len; i++ ) {
  1306. bytesread += fread(&i8,data_size,1,mat->fp);
  1307. data[i] = i8;
  1308. }
  1309. } else {
  1310. for ( i = 0; i < len; i++ ) {
  1311. bytesread += fread(&i8,data_size,1,mat->fp);
  1312. data[i] = i8;
  1313. }
  1314. }
  1315. break;
  1316. }
  1317. case MAT_T_UINT8:
  1318. {
  1319. mat_uint8_t ui8;
  1320. data_size = sizeof(mat_uint8_t);
  1321. if ( mat->byteswap ) {
  1322. for ( i = 0; i < len; i++ ) {
  1323. bytesread += fread(&ui8,data_size,1,mat->fp);
  1324. data[i] = ui8;
  1325. }
  1326. } else {
  1327. for ( i = 0; i < len; i++ ) {
  1328. bytesread += fread(&ui8,data_size,1,mat->fp);
  1329. data[i] = ui8;
  1330. }
  1331. }
  1332. break;
  1333. }
  1334. }
  1335. bytesread *= data_size;
  1336. return bytesread;
  1337. }
  1338. #if defined(HAVE_ZLIB)
  1339. /** @brief Reads data of type @c data_type into an unsigned 64-bit integer type
  1340. *
  1341. * Reads from the MAT file @c len compressed elements of data type @c data_type
  1342. * storing them as unsigned 64-bit integers in @c data.
  1343. * @ingroup mat_internal
  1344. * @param mat MAT file pointer
  1345. * @param z Pointer to the zlib stream for inflation
  1346. * @param data Pointer to store the output unsigned 64-bit integer values
  1347. * (len*sizeof(mat_uint64_t))
  1348. * @param data_type one of the @c matio_types enumerations which is the source
  1349. * data type in the file
  1350. * @param len Number of elements of type @c data_type to read from the file
  1351. * @retval Number of bytes read from the file
  1352. */
  1353. int
  1354. ReadCompressedUInt64Data(mat_t *mat,z_stream *z,mat_uint64_t *data,
  1355. int data_type,int len)
  1356. {
  1357. int nBytes = 0, data_size = 0, i;
  1358. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  1359. return 0;
  1360. switch ( data_type ) {
  1361. case MAT_T_DOUBLE:
  1362. {
  1363. double d;
  1364. data_size = sizeof(double);
  1365. if ( mat->byteswap ) {
  1366. for ( i = 0; i < len; i++ ) {
  1367. InflateData(mat,z,&d,data_size);
  1368. data[i] = Mat_doubleSwap(&d);
  1369. }
  1370. } else {
  1371. for ( i = 0; i < len; i++ ) {
  1372. InflateData(mat,z,&d,data_size);
  1373. data[i] = d;
  1374. }
  1375. }
  1376. break;
  1377. }
  1378. case MAT_T_SINGLE:
  1379. {
  1380. float f;
  1381. data_size = sizeof(float);
  1382. if ( mat->byteswap ) {
  1383. for ( i = 0; i < len; i++ ) {
  1384. InflateData(mat,z,&f,data_size);
  1385. data[i] = Mat_floatSwap(&f);
  1386. }
  1387. } else {
  1388. for ( i = 0; i < len; i++ ) {
  1389. InflateData(mat,z,&f,data_size);
  1390. data[i] = f;
  1391. }
  1392. }
  1393. break;
  1394. }
  1395. case MAT_T_INT64:
  1396. {
  1397. mat_int64_t i64;
  1398. data_size = sizeof(mat_int64_t);
  1399. if ( mat->byteswap ) {
  1400. for ( i = 0; i < len; i++ ) {
  1401. InflateData(mat,z,&i64,data_size);
  1402. data[i] = Mat_int64Swap(&i64);
  1403. }
  1404. } else {
  1405. for ( i = 0; i < len; i++ ) {
  1406. InflateData(mat,z,&i64,data_size);
  1407. data[i] = i64;
  1408. }
  1409. }
  1410. break;
  1411. }
  1412. case MAT_T_UINT64:
  1413. {
  1414. mat_uint64_t ui64;
  1415. data_size = sizeof(mat_uint64_t);
  1416. if ( mat->byteswap ) {
  1417. for ( i = 0; i < len; i++ ) {
  1418. InflateData(mat,z,&ui64,data_size);
  1419. data[i] = Mat_uint64Swap(&ui64);
  1420. }
  1421. } else {
  1422. for ( i = 0; i < len; i++ ) {
  1423. InflateData(mat,z,&ui64,data_size);
  1424. data[i] = ui64;
  1425. }
  1426. }
  1427. break;
  1428. }
  1429. case MAT_T_INT32:
  1430. {
  1431. mat_int32_t i32;
  1432. data_size = sizeof(mat_int32_t);
  1433. if ( mat->byteswap ) {
  1434. for ( i = 0; i < len; i++ ) {
  1435. InflateData(mat,z,&i32,data_size);
  1436. data[i] = Mat_int32Swap(&i32);
  1437. }
  1438. } else {
  1439. for ( i = 0; i < len; i++ ) {
  1440. InflateData(mat,z,&i32,data_size);
  1441. data[i] = i32;
  1442. }
  1443. }
  1444. break;
  1445. }
  1446. case MAT_T_UINT32:
  1447. {
  1448. mat_uint32_t ui32;
  1449. data_size = sizeof(mat_uint32_t);
  1450. if ( mat->byteswap ) {
  1451. for ( i = 0; i < len; i++ ) {
  1452. InflateData(mat,z,&ui32,data_size);
  1453. data[i] = Mat_uint32Swap(&ui32);
  1454. }
  1455. } else {
  1456. for ( i = 0; i < len; i++ ) {
  1457. InflateData(mat,z,&ui32,data_size);
  1458. data[i] = ui32;
  1459. }
  1460. }
  1461. break;
  1462. }
  1463. case MAT_T_INT16:
  1464. {
  1465. mat_int16_t i16;
  1466. data_size = sizeof(mat_int16_t);
  1467. if ( mat->byteswap ) {
  1468. for ( i = 0; i < len; i++ ) {
  1469. InflateData(mat,z,&i16,data_size);
  1470. data[i] = Mat_int16Swap(&i16);
  1471. }
  1472. } else {
  1473. for ( i = 0; i < len; i++ ) {
  1474. InflateData(mat,z,&i16,data_size);
  1475. data[i] = i16;
  1476. }
  1477. }
  1478. break;
  1479. }
  1480. case MAT_T_UINT16:
  1481. {
  1482. mat_uint16_t ui16;
  1483. data_size = sizeof(mat_uint16_t);
  1484. if ( mat->byteswap ) {
  1485. for ( i = 0; i < len; i++ ) {
  1486. InflateData(mat,z,&ui16,data_size);
  1487. data[i] = Mat_uint16Swap(&ui16);
  1488. }
  1489. } else {
  1490. for ( i = 0; i < len; i++ ) {
  1491. InflateData(mat,z,&ui16,data_size);
  1492. data[i] = ui16;
  1493. }
  1494. }
  1495. break;
  1496. }
  1497. case MAT_T_UINT8:
  1498. {
  1499. mat_uint8_t ui8;
  1500. data_size = sizeof(mat_uint8_t);
  1501. for ( i = 0; i < len; i++ ) {
  1502. InflateData(mat,z,&ui8,data_size);
  1503. data[i] = ui8;
  1504. }
  1505. break;
  1506. }
  1507. case MAT_T_INT8:
  1508. {
  1509. mat_int8_t i8;
  1510. data_size = sizeof(mat_int8_t);
  1511. for ( i = 0; i < len; i++ ) {
  1512. InflateData(mat,z,&i8,data_size);
  1513. data[i] = i8;
  1514. }
  1515. break;
  1516. }
  1517. }
  1518. nBytes = len*data_size;
  1519. return nBytes;
  1520. }
  1521. #endif /* HAVE_ZLIB */
  1522. #endif /* HAVE_MAT_UINT64_T */
  1523. /** @brief Reads data of type @c data_type into a signed 32-bit integer type
  1524. *
  1525. * Reads from the MAT file @c len elements of data type @c data_type storing
  1526. * them as signed 32-bit integers in @c data.
  1527. * @ingroup mat_internal
  1528. * @param mat MAT file pointer
  1529. * @param data Pointer to store the output signed 32-bit integer values
  1530. * (len*sizeof(mat_int32_t))
  1531. * @param data_type one of the @c matio_types enumerations which is the source
  1532. * data type in the file
  1533. * @param len Number of elements of type @c data_type to read from the file
  1534. * @retval Number of bytes read from the file
  1535. */
  1536. int
  1537. ReadInt32Data(mat_t *mat,mat_int32_t *data,int data_type,int len)
  1538. {
  1539. int bytesread = 0, data_size = 0, i;
  1540. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  1541. return 0;
  1542. switch ( data_type ) {
  1543. case MAT_T_DOUBLE:
  1544. {
  1545. double d;
  1546. data_size = sizeof(double);
  1547. if ( mat->byteswap ) {
  1548. for ( i = 0; i < len; i++ ) {
  1549. bytesread += fread(&d,data_size,1,mat->fp);
  1550. data[i] = Mat_doubleSwap(&d);
  1551. }
  1552. } else {
  1553. for ( i = 0; i < len; i++ ) {
  1554. bytesread += fread(&d,data_size,1,mat->fp);
  1555. data[i] = d;
  1556. }
  1557. }
  1558. break;
  1559. }
  1560. case MAT_T_SINGLE:
  1561. {
  1562. float f;
  1563. data_size = sizeof(float);
  1564. if ( mat->byteswap ) {
  1565. for ( i = 0; i < len; i++ ) {
  1566. bytesread += fread(&f,data_size,1,mat->fp);
  1567. data[i] = Mat_floatSwap(&f);
  1568. }
  1569. } else {
  1570. for ( i = 0; i < len; i++ ) {
  1571. bytesread += fread(&f,data_size,1,mat->fp);
  1572. data[i] = f;
  1573. }
  1574. }
  1575. break;
  1576. }
  1577. case MAT_T_INT32:
  1578. {
  1579. mat_int32_t i32;
  1580. data_size = sizeof(mat_int32_t);
  1581. if ( mat->byteswap ) {
  1582. for ( i = 0; i < len; i++ ) {
  1583. bytesread += fread(&i32,data_size,1,mat->fp);
  1584. data[i] = Mat_int32Swap(&i32);
  1585. }
  1586. } else {
  1587. for ( i = 0; i < len; i++ ) {
  1588. bytesread += fread(&i32,data_size,1,mat->fp);
  1589. data[i] = i32;
  1590. }
  1591. }
  1592. break;
  1593. }
  1594. case MAT_T_UINT32:
  1595. {
  1596. mat_uint32_t ui32;
  1597. data_size = sizeof(mat_uint32_t);
  1598. if ( mat->byteswap ) {
  1599. for ( i = 0; i < len; i++ ) {
  1600. bytesread += fread(&ui32,data_size,1,mat->fp);
  1601. data[i] = Mat_uint32Swap(&ui32);
  1602. }
  1603. } else {
  1604. for ( i = 0; i < len; i++ ) {
  1605. bytesread += fread(&ui32,data_size,1,mat->fp);
  1606. data[i] = ui32;
  1607. }
  1608. }
  1609. break;
  1610. }
  1611. case MAT_T_INT16:
  1612. {
  1613. mat_int16_t i16;
  1614. data_size = sizeof(mat_int16_t);
  1615. if ( mat->byteswap ) {
  1616. for ( i = 0; i < len; i++ ) {
  1617. bytesread += fread(&i16,data_size,1,mat->fp);
  1618. data[i] = Mat_int16Swap(&i16);
  1619. }
  1620. } else {
  1621. for ( i = 0; i < len; i++ ) {
  1622. bytesread += fread(&i16,data_size,1,mat->fp);
  1623. data[i] = i16;
  1624. }
  1625. }
  1626. break;
  1627. }
  1628. case MAT_T_UINT16:
  1629. {
  1630. mat_uint16_t ui16;
  1631. data_size = sizeof(mat_uint16_t);
  1632. if ( mat->byteswap ) {
  1633. for ( i = 0; i < len; i++ ) {
  1634. bytesread += fread(&ui16,data_size,1,mat->fp);
  1635. data[i] = Mat_uint16Swap(&ui16);
  1636. }
  1637. } else {
  1638. for ( i = 0; i < len; i++ ) {
  1639. bytesread += fread(&ui16,data_size,1,mat->fp);
  1640. data[i] = ui16;
  1641. }
  1642. }
  1643. break;
  1644. }
  1645. case MAT_T_INT8:
  1646. {
  1647. mat_int8_t i8;
  1648. data_size = sizeof(mat_int8_t);
  1649. if ( mat->byteswap ) {
  1650. for ( i = 0; i < len; i++ ) {
  1651. bytesread += fread(&i8,data_size,1,mat->fp);
  1652. data[i] = i8;
  1653. }
  1654. } else {
  1655. for ( i = 0; i < len; i++ ) {
  1656. bytesread += fread(&i8,data_size,1,mat->fp);
  1657. data[i] = i8;
  1658. }
  1659. }
  1660. break;
  1661. }
  1662. case MAT_T_UINT8:
  1663. {
  1664. mat_uint8_t ui8;
  1665. data_size = sizeof(mat_uint8_t);
  1666. if ( mat->byteswap ) {
  1667. for ( i = 0; i < len; i++ ) {
  1668. bytesread += fread(&ui8,data_size,1,mat->fp);
  1669. data[i] = ui8;
  1670. }
  1671. } else {
  1672. for ( i = 0; i < len; i++ ) {
  1673. bytesread += fread(&ui8,data_size,1,mat->fp);
  1674. data[i] = ui8;
  1675. }
  1676. }
  1677. break;
  1678. }
  1679. }
  1680. bytesread *= data_size;
  1681. return bytesread;
  1682. }
  1683. #if defined(HAVE_ZLIB)
  1684. /** @brief Reads data of type @c data_type into a signed 32-bit integer type
  1685. *
  1686. * Reads from the MAT file @c len compressed elements of data type @c data_type
  1687. * storing them as signed 32-bit integers in @c data.
  1688. * @ingroup mat_internal
  1689. * @param mat MAT file pointer
  1690. * @param z Pointer to the zlib stream for inflation
  1691. * @param data Pointer to store the output signed 32-bit integer values
  1692. * (len*sizeof(mat_int32_t))
  1693. * @param data_type one of the @c matio_types enumerations which is the source
  1694. * data type in the file
  1695. * @param len Number of elements of type @c data_type to read from the file
  1696. * @retval Number of bytes read from the file
  1697. */
  1698. int
  1699. ReadCompressedInt32Data(mat_t *mat,z_stream *z,mat_int32_t *data,
  1700. int data_type,int len)
  1701. {
  1702. int nBytes = 0, data_size = 0, i;
  1703. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  1704. return 0;
  1705. switch ( data_type ) {
  1706. case MAT_T_DOUBLE:
  1707. {
  1708. double d;
  1709. data_size = sizeof(double);
  1710. if ( mat->byteswap ) {
  1711. for ( i = 0; i < len; i++ ) {
  1712. InflateData(mat,z,&d,data_size);
  1713. data[i] = Mat_doubleSwap(&d);
  1714. }
  1715. } else {
  1716. for ( i = 0; i < len; i++ ) {
  1717. InflateData(mat,z,&d,data_size);
  1718. data[i] = d;
  1719. }
  1720. }
  1721. break;
  1722. }
  1723. case MAT_T_SINGLE:
  1724. {
  1725. float f;
  1726. data_size = sizeof(float);
  1727. if ( mat->byteswap ) {
  1728. for ( i = 0; i < len; i++ ) {
  1729. InflateData(mat,z,&f,data_size);
  1730. data[i] = Mat_floatSwap(&f);
  1731. }
  1732. } else {
  1733. for ( i = 0; i < len; i++ ) {
  1734. InflateData(mat,z,&f,data_size);
  1735. data[i] = f;
  1736. }
  1737. }
  1738. break;
  1739. }
  1740. case MAT_T_INT32:
  1741. {
  1742. mat_int32_t i32;
  1743. data_size = sizeof(mat_int32_t);
  1744. if ( mat->byteswap ) {
  1745. for ( i = 0; i < len; i++ ) {
  1746. InflateData(mat,z,&i32,data_size);
  1747. data[i] = Mat_int32Swap(&i32);
  1748. }
  1749. } else {
  1750. for ( i = 0; i < len; i++ ) {
  1751. InflateData(mat,z,&i32,data_size);
  1752. data[i] = i32;
  1753. }
  1754. }
  1755. break;
  1756. }
  1757. case MAT_T_UINT32:
  1758. {
  1759. mat_uint32_t ui32;
  1760. data_size = sizeof(mat_uint32_t);
  1761. if ( mat->byteswap ) {
  1762. for ( i = 0; i < len; i++ ) {
  1763. InflateData(mat,z,&ui32,data_size);
  1764. data[i] = Mat_uint32Swap(&ui32);
  1765. }
  1766. } else {
  1767. for ( i = 0; i < len; i++ ) {
  1768. InflateData(mat,z,&ui32,data_size);
  1769. data[i] = ui32;
  1770. }
  1771. }
  1772. break;
  1773. }
  1774. case MAT_T_INT16:
  1775. {
  1776. mat_int16_t i16;
  1777. data_size = sizeof(mat_int16_t);
  1778. if ( mat->byteswap ) {
  1779. for ( i = 0; i < len; i++ ) {
  1780. InflateData(mat,z,&i16,data_size);
  1781. data[i] = Mat_int16Swap(&i16);
  1782. }
  1783. } else {
  1784. for ( i = 0; i < len; i++ ) {
  1785. InflateData(mat,z,&i16,data_size);
  1786. data[i] = i16;
  1787. }
  1788. }
  1789. break;
  1790. }
  1791. case MAT_T_UINT16:
  1792. {
  1793. mat_uint16_t ui16;
  1794. data_size = sizeof(mat_uint16_t);
  1795. if ( mat->byteswap ) {
  1796. for ( i = 0; i < len; i++ ) {
  1797. InflateData(mat,z,&ui16,data_size);
  1798. data[i] = Mat_uint16Swap(&ui16);
  1799. }
  1800. } else {
  1801. for ( i = 0; i < len; i++ ) {
  1802. InflateData(mat,z,&ui16,data_size);
  1803. data[i] = ui16;
  1804. }
  1805. }
  1806. break;
  1807. }
  1808. case MAT_T_UINT8:
  1809. {
  1810. mat_uint8_t ui8;
  1811. data_size = sizeof(mat_uint8_t);
  1812. for ( i = 0; i < len; i++ ) {
  1813. InflateData(mat,z,&ui8,data_size);
  1814. data[i] = ui8;
  1815. }
  1816. break;
  1817. }
  1818. case MAT_T_INT8:
  1819. {
  1820. mat_int8_t i8;
  1821. data_size = sizeof(mat_int8_t);
  1822. for ( i = 0; i < len; i++ ) {
  1823. InflateData(mat,z,&i8,data_size);
  1824. data[i] = i8;
  1825. }
  1826. break;
  1827. }
  1828. }
  1829. nBytes = len*data_size;
  1830. return nBytes;
  1831. }
  1832. #endif
  1833. /** @brief Reads data of type @c data_type into an unsigned 32-bit integer type
  1834. *
  1835. * Reads from the MAT file @c len elements of data type @c data_type storing
  1836. * them as unsigned 32-bit integers in @c data.
  1837. * @ingroup mat_internal
  1838. * @param mat MAT file pointer
  1839. * @param data Pointer to store the output unsigned 32-bit integer values
  1840. * (len*sizeof(mat_uint32_t))
  1841. * @param data_type one of the @c matio_types enumerations which is the source
  1842. * data type in the file
  1843. * @param len Number of elements of type @c data_type to read from the file
  1844. * @retval Number of bytes read from the file
  1845. */
  1846. int
  1847. ReadUInt32Data(mat_t *mat,mat_uint32_t *data,int data_type,int len)
  1848. {
  1849. int bytesread = 0, data_size = 0, i;
  1850. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  1851. return 0;
  1852. switch ( data_type ) {
  1853. case MAT_T_DOUBLE:
  1854. {
  1855. double d;
  1856. data_size = sizeof(double);
  1857. if ( mat->byteswap ) {
  1858. for ( i = 0; i < len; i++ ) {
  1859. bytesread += fread(&d,data_size,1,mat->fp);
  1860. data[i] = Mat_doubleSwap(&d);
  1861. }
  1862. } else {
  1863. for ( i = 0; i < len; i++ ) {
  1864. bytesread += fread(&d,data_size,1,mat->fp);
  1865. data[i] = d;
  1866. }
  1867. }
  1868. break;
  1869. }
  1870. case MAT_T_SINGLE:
  1871. {
  1872. float f;
  1873. data_size = sizeof(float);
  1874. if ( mat->byteswap ) {
  1875. for ( i = 0; i < len; i++ ) {
  1876. bytesread += fread(&f,data_size,1,mat->fp);
  1877. data[i] = Mat_floatSwap(&f);
  1878. }
  1879. } else {
  1880. for ( i = 0; i < len; i++ ) {
  1881. bytesread += fread(&f,data_size,1,mat->fp);
  1882. data[i] = f;
  1883. }
  1884. }
  1885. break;
  1886. }
  1887. case MAT_T_INT32:
  1888. {
  1889. mat_int32_t i32;
  1890. data_size = sizeof(mat_int32_t);
  1891. if ( mat->byteswap ) {
  1892. for ( i = 0; i < len; i++ ) {
  1893. bytesread += fread(&i32,data_size,1,mat->fp);
  1894. data[i] = Mat_int32Swap(&i32);
  1895. }
  1896. } else {
  1897. for ( i = 0; i < len; i++ ) {
  1898. bytesread += fread(&i32,data_size,1,mat->fp);
  1899. data[i] = i32;
  1900. }
  1901. }
  1902. break;
  1903. }
  1904. case MAT_T_UINT32:
  1905. {
  1906. mat_uint32_t ui32;
  1907. data_size = sizeof(mat_uint32_t);
  1908. if ( mat->byteswap ) {
  1909. for ( i = 0; i < len; i++ ) {
  1910. bytesread += fread(&ui32,data_size,1,mat->fp);
  1911. data[i] = Mat_uint32Swap(&ui32);
  1912. }
  1913. } else {
  1914. for ( i = 0; i < len; i++ ) {
  1915. bytesread += fread(&ui32,data_size,1,mat->fp);
  1916. data[i] = ui32;
  1917. }
  1918. }
  1919. break;
  1920. }
  1921. case MAT_T_INT16:
  1922. {
  1923. mat_int16_t i16;
  1924. data_size = sizeof(mat_int16_t);
  1925. if ( mat->byteswap ) {
  1926. for ( i = 0; i < len; i++ ) {
  1927. bytesread += fread(&i16,data_size,1,mat->fp);
  1928. data[i] = Mat_int16Swap(&i16);
  1929. }
  1930. } else {
  1931. for ( i = 0; i < len; i++ ) {
  1932. bytesread += fread(&i16,data_size,1,mat->fp);
  1933. data[i] = i16;
  1934. }
  1935. }
  1936. break;
  1937. }
  1938. case MAT_T_UINT16:
  1939. {
  1940. mat_uint16_t ui16;
  1941. data_size = sizeof(mat_uint16_t);
  1942. if ( mat->byteswap ) {
  1943. for ( i = 0; i < len; i++ ) {
  1944. bytesread += fread(&ui16,data_size,1,mat->fp);
  1945. data[i] = Mat_uint16Swap(&ui16);
  1946. }
  1947. } else {
  1948. for ( i = 0; i < len; i++ ) {
  1949. bytesread += fread(&ui16,data_size,1,mat->fp);
  1950. data[i] = ui16;
  1951. }
  1952. }
  1953. break;
  1954. }
  1955. case MAT_T_INT8:
  1956. {
  1957. mat_int8_t i8;
  1958. data_size = sizeof(mat_int8_t);
  1959. if ( mat->byteswap ) {
  1960. for ( i = 0; i < len; i++ ) {
  1961. bytesread += fread(&i8,data_size,1,mat->fp);
  1962. data[i] = i8;
  1963. }
  1964. } else {
  1965. for ( i = 0; i < len; i++ ) {
  1966. bytesread += fread(&i8,data_size,1,mat->fp);
  1967. data[i] = i8;
  1968. }
  1969. }
  1970. break;
  1971. }
  1972. case MAT_T_UINT8:
  1973. {
  1974. mat_uint8_t ui8;
  1975. data_size = sizeof(mat_uint8_t);
  1976. if ( mat->byteswap ) {
  1977. for ( i = 0; i < len; i++ ) {
  1978. bytesread += fread(&ui8,data_size,1,mat->fp);
  1979. data[i] = ui8;
  1980. }
  1981. } else {
  1982. for ( i = 0; i < len; i++ ) {
  1983. bytesread += fread(&ui8,data_size,1,mat->fp);
  1984. data[i] = ui8;
  1985. }
  1986. }
  1987. break;
  1988. }
  1989. }
  1990. bytesread *= data_size;
  1991. return bytesread;
  1992. }
  1993. #if defined(HAVE_ZLIB)
  1994. /** @brief Reads data of type @c data_type into an unsigned 32-bit integer type
  1995. *
  1996. * Reads from the MAT file @c len compressed elements of data type @c data_type
  1997. * storing them as unsigned 32-bit integers in @c data.
  1998. * @ingroup mat_internal
  1999. * @param mat MAT file pointer
  2000. * @param z Pointer to the zlib stream for inflation
  2001. * @param data Pointer to store the output unsigned 32-bit integer values
  2002. * (len*sizeof(mat_uint32_t))
  2003. * @param data_type one of the @c matio_types enumerations which is the source
  2004. * data type in the file
  2005. * @param len Number of elements of type @c data_type to read from the file
  2006. * @retval Number of bytes read from the file
  2007. */
  2008. int
  2009. ReadCompressedUInt32Data(mat_t *mat,z_stream *z,mat_uint32_t *data,
  2010. int data_type,int len)
  2011. {
  2012. int nBytes = 0, data_size = 0, i;
  2013. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  2014. return 0;
  2015. switch ( data_type ) {
  2016. case MAT_T_DOUBLE:
  2017. {
  2018. double d;
  2019. data_size = sizeof(double);
  2020. if ( mat->byteswap ) {
  2021. for ( i = 0; i < len; i++ ) {
  2022. InflateData(mat,z,&d,data_size);
  2023. data[i] = Mat_doubleSwap(&d);
  2024. }
  2025. } else {
  2026. for ( i = 0; i < len; i++ ) {
  2027. InflateData(mat,z,&d,data_size);
  2028. data[i] = d;
  2029. }
  2030. }
  2031. break;
  2032. }
  2033. case MAT_T_SINGLE:
  2034. {
  2035. float f;
  2036. data_size = sizeof(float);
  2037. if ( mat->byteswap ) {
  2038. for ( i = 0; i < len; i++ ) {
  2039. InflateData(mat,z,&f,data_size);
  2040. data[i] = Mat_floatSwap(&f);
  2041. }
  2042. } else {
  2043. for ( i = 0; i < len; i++ ) {
  2044. InflateData(mat,z,&f,data_size);
  2045. data[i] = f;
  2046. }
  2047. }
  2048. break;
  2049. }
  2050. case MAT_T_INT32:
  2051. {
  2052. mat_int32_t i32;
  2053. data_size = sizeof(mat_int32_t);
  2054. if ( mat->byteswap ) {
  2055. for ( i = 0; i < len; i++ ) {
  2056. InflateData(mat,z,&i32,data_size);
  2057. data[i] = Mat_int32Swap(&i32);
  2058. }
  2059. } else {
  2060. for ( i = 0; i < len; i++ ) {
  2061. InflateData(mat,z,&i32,data_size);
  2062. data[i] = i32;
  2063. }
  2064. }
  2065. break;
  2066. }
  2067. case MAT_T_UINT32:
  2068. {
  2069. mat_uint32_t ui32;
  2070. data_size = sizeof(mat_uint32_t);
  2071. if ( mat->byteswap ) {
  2072. for ( i = 0; i < len; i++ ) {
  2073. InflateData(mat,z,&ui32,data_size);
  2074. data[i] = Mat_uint32Swap(&ui32);
  2075. }
  2076. } else {
  2077. for ( i = 0; i < len; i++ ) {
  2078. InflateData(mat,z,&ui32,data_size);
  2079. data[i] = ui32;
  2080. }
  2081. }
  2082. break;
  2083. }
  2084. case MAT_T_INT16:
  2085. {
  2086. mat_int16_t i16;
  2087. data_size = sizeof(mat_int16_t);
  2088. if ( mat->byteswap ) {
  2089. for ( i = 0; i < len; i++ ) {
  2090. InflateData(mat,z,&i16,data_size);
  2091. data[i] = Mat_int16Swap(&i16);
  2092. }
  2093. } else {
  2094. for ( i = 0; i < len; i++ ) {
  2095. InflateData(mat,z,&i16,data_size);
  2096. data[i] = i16;
  2097. }
  2098. }
  2099. break;
  2100. }
  2101. case MAT_T_UINT16:
  2102. {
  2103. mat_uint16_t ui16;
  2104. data_size = sizeof(mat_uint16_t);
  2105. if ( mat->byteswap ) {
  2106. for ( i = 0; i < len; i++ ) {
  2107. InflateData(mat,z,&ui16,data_size);
  2108. data[i] = Mat_uint16Swap(&ui16);
  2109. }
  2110. } else {
  2111. for ( i = 0; i < len; i++ ) {
  2112. InflateData(mat,z,&ui16,data_size);
  2113. data[i] = ui16;
  2114. }
  2115. }
  2116. break;
  2117. }
  2118. case MAT_T_UINT8:
  2119. {
  2120. mat_uint8_t ui8;
  2121. data_size = sizeof(mat_uint8_t);
  2122. for ( i = 0; i < len; i++ ) {
  2123. InflateData(mat,z,&ui8,data_size);
  2124. data[i] = ui8;
  2125. }
  2126. break;
  2127. }
  2128. case MAT_T_INT8:
  2129. {
  2130. mat_int8_t i8;
  2131. data_size = sizeof(mat_int8_t);
  2132. for ( i = 0; i < len; i++ ) {
  2133. InflateData(mat,z,&i8,data_size);
  2134. data[i] = i8;
  2135. }
  2136. break;
  2137. }
  2138. }
  2139. nBytes = len*data_size;
  2140. return nBytes;
  2141. }
  2142. #endif
  2143. /** @brief Reads data of type @c data_type into a signed 16-bit integer type
  2144. *
  2145. * Reads from the MAT file @c len elements of data type @c data_type storing
  2146. * them as signed 16-bit integers in @c data.
  2147. * @ingroup mat_internal
  2148. * @param mat MAT file pointer
  2149. * @param data Pointer to store the output signed 16-bit integer values
  2150. * (len*sizeof(mat_int16_t))
  2151. * @param data_type one of the @c matio_types enumerations which is the source
  2152. * data type in the file
  2153. * @param len Number of elements of type @c data_type to read from the file
  2154. * @retval Number of bytes read from the file
  2155. */
  2156. int
  2157. ReadInt16Data(mat_t *mat,mat_int16_t *data,int data_type,int len)
  2158. {
  2159. int bytesread = 0, data_size = 0, i;
  2160. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  2161. return 0;
  2162. switch ( data_type ) {
  2163. case MAT_T_DOUBLE:
  2164. {
  2165. double d;
  2166. data_size = sizeof(double);
  2167. if ( mat->byteswap ) {
  2168. for ( i = 0; i < len; i++ ) {
  2169. bytesread += fread(&d,data_size,1,mat->fp);
  2170. data[i] = Mat_doubleSwap(&d);
  2171. }
  2172. } else {
  2173. for ( i = 0; i < len; i++ ) {
  2174. bytesread += fread(&d,data_size,1,mat->fp);
  2175. data[i] = d;
  2176. }
  2177. }
  2178. break;
  2179. }
  2180. case MAT_T_SINGLE:
  2181. {
  2182. float f;
  2183. data_size = sizeof(float);
  2184. if ( mat->byteswap ) {
  2185. for ( i = 0; i < len; i++ ) {
  2186. bytesread += fread(&f,data_size,1,mat->fp);
  2187. data[i] = Mat_floatSwap(&f);
  2188. }
  2189. } else {
  2190. for ( i = 0; i < len; i++ ) {
  2191. bytesread += fread(&f,data_size,1,mat->fp);
  2192. data[i] = f;
  2193. }
  2194. }
  2195. break;
  2196. }
  2197. case MAT_T_INT32:
  2198. {
  2199. mat_int32_t i32;
  2200. data_size = sizeof(mat_int32_t);
  2201. if ( mat->byteswap ) {
  2202. for ( i = 0; i < len; i++ ) {
  2203. bytesread += fread(&i32,data_size,1,mat->fp);
  2204. data[i] = Mat_int32Swap(&i32);
  2205. }
  2206. } else {
  2207. for ( i = 0; i < len; i++ ) {
  2208. bytesread += fread(&i32,data_size,1,mat->fp);
  2209. data[i] = i32;
  2210. }
  2211. }
  2212. break;
  2213. }
  2214. case MAT_T_UINT32:
  2215. {
  2216. mat_uint32_t ui32;
  2217. data_size = sizeof(mat_uint32_t);
  2218. if ( mat->byteswap ) {
  2219. for ( i = 0; i < len; i++ ) {
  2220. bytesread += fread(&ui32,data_size,1,mat->fp);
  2221. data[i] = Mat_uint32Swap(&ui32);
  2222. }
  2223. } else {
  2224. for ( i = 0; i < len; i++ ) {
  2225. bytesread += fread(&ui32,data_size,1,mat->fp);
  2226. data[i] = ui32;
  2227. }
  2228. }
  2229. break;
  2230. }
  2231. case MAT_T_INT16:
  2232. {
  2233. mat_int16_t i16;
  2234. data_size = sizeof(mat_int16_t);
  2235. if ( mat->byteswap ) {
  2236. for ( i = 0; i < len; i++ ) {
  2237. bytesread += fread(&i16,data_size,1,mat->fp);
  2238. data[i] = Mat_int16Swap(&i16);
  2239. }
  2240. } else {
  2241. for ( i = 0; i < len; i++ ) {
  2242. bytesread += fread(&i16,data_size,1,mat->fp);
  2243. data[i] = i16;
  2244. }
  2245. }
  2246. break;
  2247. }
  2248. case MAT_T_UINT16:
  2249. {
  2250. mat_uint16_t ui16;
  2251. data_size = sizeof(mat_uint16_t);
  2252. if ( mat->byteswap ) {
  2253. for ( i = 0; i < len; i++ ) {
  2254. bytesread += fread(&ui16,data_size,1,mat->fp);
  2255. data[i] = Mat_uint16Swap(&ui16);
  2256. }
  2257. } else {
  2258. for ( i = 0; i < len; i++ ) {
  2259. bytesread += fread(&ui16,data_size,1,mat->fp);
  2260. data[i] = ui16;
  2261. }
  2262. }
  2263. break;
  2264. }
  2265. case MAT_T_INT8:
  2266. {
  2267. mat_int8_t i8;
  2268. data_size = sizeof(mat_int8_t);
  2269. if ( mat->byteswap ) {
  2270. for ( i = 0; i < len; i++ ) {
  2271. bytesread += fread(&i8,data_size,1,mat->fp);
  2272. data[i] = i8;
  2273. }
  2274. } else {
  2275. for ( i = 0; i < len; i++ ) {
  2276. bytesread += fread(&i8,data_size,1,mat->fp);
  2277. data[i] = i8;
  2278. }
  2279. }
  2280. break;
  2281. }
  2282. case MAT_T_UINT8:
  2283. {
  2284. mat_uint8_t ui8;
  2285. data_size = sizeof(mat_uint8_t);
  2286. if ( mat->byteswap ) {
  2287. for ( i = 0; i < len; i++ ) {
  2288. bytesread += fread(&ui8,data_size,1,mat->fp);
  2289. data[i] = ui8;
  2290. }
  2291. } else {
  2292. for ( i = 0; i < len; i++ ) {
  2293. bytesread += fread(&ui8,data_size,1,mat->fp);
  2294. data[i] = ui8;
  2295. }
  2296. }
  2297. break;
  2298. }
  2299. }
  2300. bytesread *= data_size;
  2301. return bytesread;
  2302. }
  2303. #if defined(HAVE_ZLIB)
  2304. /** @brief Reads data of type @c data_type into a signed 16-bit integer type
  2305. *
  2306. * Reads from the MAT file @c len compressed elements of data type @c data_type
  2307. * storing them as signed 16-bit integers in @c data.
  2308. * @ingroup mat_internal
  2309. * @param mat MAT file pointer
  2310. * @param z Pointer to the zlib stream for inflation
  2311. * @param data Pointer to store the output signed 16-bit integer values
  2312. * (len*sizeof(mat_int16_t))
  2313. * @param data_type one of the @c matio_types enumerations which is the source
  2314. * data type in the file
  2315. * @param len Number of elements of type @c data_type to read from the file
  2316. * @retval Number of bytes read from the file
  2317. */
  2318. int
  2319. ReadCompressedInt16Data(mat_t *mat,z_stream *z,mat_int16_t *data,
  2320. int data_type,int len)
  2321. {
  2322. int nBytes = 0, data_size = 0, i;
  2323. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  2324. return 0;
  2325. switch ( data_type ) {
  2326. case MAT_T_DOUBLE:
  2327. {
  2328. double d;
  2329. data_size = sizeof(double);
  2330. if ( mat->byteswap ) {
  2331. for ( i = 0; i < len; i++ ) {
  2332. InflateData(mat,z,&d,data_size);
  2333. data[i] = Mat_doubleSwap(&d);
  2334. }
  2335. } else {
  2336. for ( i = 0; i < len; i++ ) {
  2337. InflateData(mat,z,&d,data_size);
  2338. data[i] = d;
  2339. }
  2340. }
  2341. break;
  2342. }
  2343. case MAT_T_SINGLE:
  2344. {
  2345. float f;
  2346. data_size = sizeof(float);
  2347. if ( mat->byteswap ) {
  2348. for ( i = 0; i < len; i++ ) {
  2349. InflateData(mat,z,&f,data_size);
  2350. data[i] = Mat_floatSwap(&f);
  2351. }
  2352. } else {
  2353. for ( i = 0; i < len; i++ ) {
  2354. InflateData(mat,z,&f,data_size);
  2355. data[i] = f;
  2356. }
  2357. }
  2358. break;
  2359. }
  2360. case MAT_T_INT32:
  2361. {
  2362. mat_int32_t i32;
  2363. data_size = sizeof(mat_int32_t);
  2364. if ( mat->byteswap ) {
  2365. for ( i = 0; i < len; i++ ) {
  2366. InflateData(mat,z,&i32,data_size);
  2367. data[i] = Mat_int32Swap(&i32);
  2368. }
  2369. } else {
  2370. for ( i = 0; i < len; i++ ) {
  2371. InflateData(mat,z,&i32,data_size);
  2372. data[i] = i32;
  2373. }
  2374. }
  2375. break;
  2376. }
  2377. case MAT_T_UINT32:
  2378. {
  2379. mat_uint32_t ui32;
  2380. data_size = sizeof(mat_uint32_t);
  2381. if ( mat->byteswap ) {
  2382. for ( i = 0; i < len; i++ ) {
  2383. InflateData(mat,z,&ui32,data_size);
  2384. data[i] = Mat_uint32Swap(&ui32);
  2385. }
  2386. } else {
  2387. for ( i = 0; i < len; i++ ) {
  2388. InflateData(mat,z,&ui32,data_size);
  2389. data[i] = ui32;
  2390. }
  2391. }
  2392. break;
  2393. }
  2394. case MAT_T_INT16:
  2395. {
  2396. mat_int16_t i16;
  2397. data_size = sizeof(mat_int16_t);
  2398. if ( mat->byteswap ) {
  2399. for ( i = 0; i < len; i++ ) {
  2400. InflateData(mat,z,&i16,data_size);
  2401. data[i] = Mat_int16Swap(&i16);
  2402. }
  2403. } else {
  2404. for ( i = 0; i < len; i++ ) {
  2405. InflateData(mat,z,&i16,data_size);
  2406. data[i] = i16;
  2407. }
  2408. }
  2409. break;
  2410. }
  2411. case MAT_T_UINT16:
  2412. {
  2413. mat_uint16_t ui16;
  2414. data_size = sizeof(mat_uint16_t);
  2415. if ( mat->byteswap ) {
  2416. for ( i = 0; i < len; i++ ) {
  2417. InflateData(mat,z,&ui16,data_size);
  2418. data[i] = Mat_uint16Swap(&ui16);
  2419. }
  2420. } else {
  2421. for ( i = 0; i < len; i++ ) {
  2422. InflateData(mat,z,&ui16,data_size);
  2423. data[i] = ui16;
  2424. }
  2425. }
  2426. break;
  2427. }
  2428. case MAT_T_UINT8:
  2429. {
  2430. mat_uint8_t ui8;
  2431. data_size = sizeof(mat_uint8_t);
  2432. for ( i = 0; i < len; i++ ) {
  2433. InflateData(mat,z,&ui8,data_size);
  2434. data[i] = ui8;
  2435. }
  2436. break;
  2437. }
  2438. case MAT_T_INT8:
  2439. {
  2440. mat_int8_t i8;
  2441. data_size = sizeof(mat_int8_t);
  2442. for ( i = 0; i < len; i++ ) {
  2443. InflateData(mat,z,&i8,data_size);
  2444. data[i] = i8;
  2445. }
  2446. break;
  2447. }
  2448. }
  2449. nBytes = len*data_size;
  2450. return nBytes;
  2451. }
  2452. #endif
  2453. /** @brief Reads data of type @c data_type into an unsigned 16-bit integer type
  2454. *
  2455. * Reads from the MAT file @c len elements of data type @c data_type storing
  2456. * them as unsigned 16-bit integers in @c data.
  2457. * @ingroup mat_internal
  2458. * @param mat MAT file pointer
  2459. * @param data Pointer to store the output unsigned 16-bit integer values
  2460. * (len*sizeof(mat_uint16_t))
  2461. * @param data_type one of the @c matio_types enumerations which is the source
  2462. * data type in the file
  2463. * @param len Number of elements of type @c data_type to read from the file
  2464. * @retval Number of bytes read from the file
  2465. */
  2466. int
  2467. ReadUInt16Data(mat_t *mat,mat_uint16_t *data,int data_type,int len)
  2468. {
  2469. int bytesread = 0, data_size = 0, i;
  2470. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  2471. return 0;
  2472. switch ( data_type ) {
  2473. case MAT_T_DOUBLE:
  2474. {
  2475. double d;
  2476. data_size = sizeof(double);
  2477. if ( mat->byteswap ) {
  2478. for ( i = 0; i < len; i++ ) {
  2479. bytesread += fread(&d,data_size,1,mat->fp);
  2480. data[i] = Mat_doubleSwap(&d);
  2481. }
  2482. } else {
  2483. for ( i = 0; i < len; i++ ) {
  2484. bytesread += fread(&d,data_size,1,mat->fp);
  2485. data[i] = d;
  2486. }
  2487. }
  2488. break;
  2489. }
  2490. case MAT_T_SINGLE:
  2491. {
  2492. float f;
  2493. data_size = sizeof(float);
  2494. if ( mat->byteswap ) {
  2495. for ( i = 0; i < len; i++ ) {
  2496. bytesread += fread(&f,data_size,1,mat->fp);
  2497. data[i] = Mat_floatSwap(&f);
  2498. }
  2499. } else {
  2500. for ( i = 0; i < len; i++ ) {
  2501. bytesread += fread(&f,data_size,1,mat->fp);
  2502. data[i] = f;
  2503. }
  2504. }
  2505. break;
  2506. }
  2507. case MAT_T_INT32:
  2508. {
  2509. mat_int32_t i32;
  2510. data_size = sizeof(mat_int32_t);
  2511. if ( mat->byteswap ) {
  2512. for ( i = 0; i < len; i++ ) {
  2513. bytesread += fread(&i32,data_size,1,mat->fp);
  2514. data[i] = Mat_int32Swap(&i32);
  2515. }
  2516. } else {
  2517. for ( i = 0; i < len; i++ ) {
  2518. bytesread += fread(&i32,data_size,1,mat->fp);
  2519. data[i] = i32;
  2520. }
  2521. }
  2522. break;
  2523. }
  2524. case MAT_T_UINT32:
  2525. {
  2526. mat_uint32_t ui32;
  2527. data_size = sizeof(mat_uint32_t);
  2528. if ( mat->byteswap ) {
  2529. for ( i = 0; i < len; i++ ) {
  2530. bytesread += fread(&ui32,data_size,1,mat->fp);
  2531. data[i] = Mat_uint32Swap(&ui32);
  2532. }
  2533. } else {
  2534. for ( i = 0; i < len; i++ ) {
  2535. bytesread += fread(&ui32,data_size,1,mat->fp);
  2536. data[i] = ui32;
  2537. }
  2538. }
  2539. break;
  2540. }
  2541. case MAT_T_INT16:
  2542. {
  2543. mat_int16_t i16;
  2544. data_size = sizeof(mat_int16_t);
  2545. if ( mat->byteswap ) {
  2546. for ( i = 0; i < len; i++ ) {
  2547. bytesread += fread(&i16,data_size,1,mat->fp);
  2548. data[i] = Mat_int16Swap(&i16);
  2549. }
  2550. } else {
  2551. for ( i = 0; i < len; i++ ) {
  2552. bytesread += fread(&i16,data_size,1,mat->fp);
  2553. data[i] = i16;
  2554. }
  2555. }
  2556. break;
  2557. }
  2558. case MAT_T_UINT16:
  2559. {
  2560. mat_uint16_t ui16;
  2561. data_size = sizeof(mat_uint16_t);
  2562. if ( mat->byteswap ) {
  2563. for ( i = 0; i < len; i++ ) {
  2564. bytesread += fread(&ui16,data_size,1,mat->fp);
  2565. data[i] = Mat_uint16Swap(&ui16);
  2566. }
  2567. } else {
  2568. for ( i = 0; i < len; i++ ) {
  2569. bytesread += fread(&ui16,data_size,1,mat->fp);
  2570. data[i] = ui16;
  2571. }
  2572. }
  2573. break;
  2574. }
  2575. case MAT_T_INT8:
  2576. {
  2577. mat_int8_t i8;
  2578. data_size = sizeof(mat_int8_t);
  2579. if ( mat->byteswap ) {
  2580. for ( i = 0; i < len; i++ ) {
  2581. bytesread += fread(&i8,data_size,1,mat->fp);
  2582. data[i] = i8;
  2583. }
  2584. } else {
  2585. for ( i = 0; i < len; i++ ) {
  2586. bytesread += fread(&i8,data_size,1,mat->fp);
  2587. data[i] = i8;
  2588. }
  2589. }
  2590. break;
  2591. }
  2592. case MAT_T_UINT8:
  2593. {
  2594. mat_uint8_t ui8;
  2595. data_size = sizeof(mat_uint8_t);
  2596. if ( mat->byteswap ) {
  2597. for ( i = 0; i < len; i++ ) {
  2598. bytesread += fread(&ui8,data_size,1,mat->fp);
  2599. data[i] = ui8;
  2600. }
  2601. } else {
  2602. for ( i = 0; i < len; i++ ) {
  2603. bytesread += fread(&ui8,data_size,1,mat->fp);
  2604. data[i] = ui8;
  2605. }
  2606. }
  2607. break;
  2608. }
  2609. }
  2610. bytesread *= data_size;
  2611. return bytesread;
  2612. }
  2613. #if defined(HAVE_ZLIB)
  2614. /** @brief Reads data of type @c data_type into an unsigned 16-bit integer type
  2615. *
  2616. * Reads from the MAT file @c len compressed elements of data type @c data_type
  2617. * storing them as unsigned 16-bit integers in @c data.
  2618. * @ingroup mat_internal
  2619. * @param mat MAT file pointer
  2620. * @param z Pointer to the zlib stream for inflation
  2621. * @param data Pointer to store the output n unsigned 16-bit integer values
  2622. * (len*sizeof(mat_uint16_t))
  2623. * @param data_type one of the @c matio_types enumerations which is the source
  2624. * data type in the file
  2625. * @param len Number of elements of type @c data_type to read from the file
  2626. * @retval Number of bytes read from the file
  2627. */
  2628. int
  2629. ReadCompressedUInt16Data(mat_t *mat,z_stream *z,mat_uint16_t *data,
  2630. int data_type,int len)
  2631. {
  2632. int nBytes = 0, data_size = 0, i;
  2633. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  2634. return 0;
  2635. switch ( data_type ) {
  2636. case MAT_T_DOUBLE:
  2637. {
  2638. double d;
  2639. data_size = sizeof(double);
  2640. if ( mat->byteswap ) {
  2641. for ( i = 0; i < len; i++ ) {
  2642. InflateData(mat,z,&d,data_size);
  2643. data[i] = Mat_doubleSwap(&d);
  2644. }
  2645. } else {
  2646. for ( i = 0; i < len; i++ ) {
  2647. InflateData(mat,z,&d,data_size);
  2648. data[i] = d;
  2649. }
  2650. }
  2651. break;
  2652. }
  2653. case MAT_T_SINGLE:
  2654. {
  2655. float f;
  2656. data_size = sizeof(float);
  2657. if ( mat->byteswap ) {
  2658. for ( i = 0; i < len; i++ ) {
  2659. InflateData(mat,z,&f,data_size);
  2660. data[i] = Mat_floatSwap(&f);
  2661. }
  2662. } else {
  2663. for ( i = 0; i < len; i++ ) {
  2664. InflateData(mat,z,&f,data_size);
  2665. data[i] = f;
  2666. }
  2667. }
  2668. break;
  2669. }
  2670. case MAT_T_INT32:
  2671. {
  2672. mat_int32_t i32;
  2673. data_size = sizeof(mat_int32_t);
  2674. if ( mat->byteswap ) {
  2675. for ( i = 0; i < len; i++ ) {
  2676. InflateData(mat,z,&i32,data_size);
  2677. data[i] = Mat_int32Swap(&i32);
  2678. }
  2679. } else {
  2680. for ( i = 0; i < len; i++ ) {
  2681. InflateData(mat,z,&i32,data_size);
  2682. data[i] = i32;
  2683. }
  2684. }
  2685. break;
  2686. }
  2687. case MAT_T_UINT32:
  2688. {
  2689. mat_uint32_t ui32;
  2690. data_size = sizeof(mat_uint32_t);
  2691. if ( mat->byteswap ) {
  2692. for ( i = 0; i < len; i++ ) {
  2693. InflateData(mat,z,&ui32,data_size);
  2694. data[i] = Mat_uint32Swap(&ui32);
  2695. }
  2696. } else {
  2697. for ( i = 0; i < len; i++ ) {
  2698. InflateData(mat,z,&ui32,data_size);
  2699. data[i] = ui32;
  2700. }
  2701. }
  2702. break;
  2703. }
  2704. case MAT_T_INT16:
  2705. {
  2706. mat_int16_t i16;
  2707. data_size = sizeof(mat_int16_t);
  2708. if ( mat->byteswap ) {
  2709. for ( i = 0; i < len; i++ ) {
  2710. InflateData(mat,z,&i16,data_size);
  2711. data[i] = Mat_int16Swap(&i16);
  2712. }
  2713. } else {
  2714. for ( i = 0; i < len; i++ ) {
  2715. InflateData(mat,z,&i16,data_size);
  2716. data[i] = i16;
  2717. }
  2718. }
  2719. break;
  2720. }
  2721. case MAT_T_UINT16:
  2722. {
  2723. mat_uint16_t ui16;
  2724. data_size = sizeof(mat_uint16_t);
  2725. if ( mat->byteswap ) {
  2726. for ( i = 0; i < len; i++ ) {
  2727. InflateData(mat,z,&ui16,data_size);
  2728. data[i] = Mat_uint16Swap(&ui16);
  2729. }
  2730. } else {
  2731. for ( i = 0; i < len; i++ ) {
  2732. InflateData(mat,z,&ui16,data_size);
  2733. data[i] = ui16;
  2734. }
  2735. }
  2736. break;
  2737. }
  2738. case MAT_T_UINT8:
  2739. {
  2740. mat_uint8_t ui8;
  2741. data_size = sizeof(mat_uint8_t);
  2742. for ( i = 0; i < len; i++ ) {
  2743. InflateData(mat,z,&ui8,data_size);
  2744. data[i] = ui8;
  2745. }
  2746. break;
  2747. }
  2748. case MAT_T_INT8:
  2749. {
  2750. mat_int8_t i8;
  2751. data_size = sizeof(mat_int8_t);
  2752. for ( i = 0; i < len; i++ ) {
  2753. InflateData(mat,z,&i8,data_size);
  2754. data[i] = i8;
  2755. }
  2756. break;
  2757. }
  2758. }
  2759. nBytes = len*data_size;
  2760. return nBytes;
  2761. }
  2762. #endif
  2763. /** @brief Reads data of type @c data_type into a signed 8-bit integer type
  2764. *
  2765. * Reads from the MAT file @c len elements of data type @c data_type storing
  2766. * them as signed 8-bit integers in @c data.
  2767. * @ingroup mat_internal
  2768. * @param mat MAT file pointer
  2769. * @param data Pointer to store the output signed 8-bit integer values
  2770. * (len*sizeof(mat_int8_t))
  2771. * @param data_type one of the @c matio_types enumerations which is the source
  2772. * data type in the file
  2773. * @param len Number of elements of type @c data_type to read from the file
  2774. * @retval Number of bytes read from the file
  2775. */
  2776. int
  2777. ReadInt8Data(mat_t *mat,mat_int8_t *data,int data_type,int len)
  2778. {
  2779. int bytesread = 0, data_size = 0, i;
  2780. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  2781. return 0;
  2782. switch ( data_type ) {
  2783. case MAT_T_DOUBLE:
  2784. {
  2785. double d;
  2786. data_size = sizeof(double);
  2787. if ( mat->byteswap ) {
  2788. for ( i = 0; i < len; i++ ) {
  2789. bytesread += fread(&d,data_size,1,mat->fp);
  2790. data[i] = Mat_doubleSwap(&d);
  2791. }
  2792. } else {
  2793. for ( i = 0; i < len; i++ ) {
  2794. bytesread += fread(&d,data_size,1,mat->fp);
  2795. data[i] = d;
  2796. }
  2797. }
  2798. break;
  2799. }
  2800. case MAT_T_SINGLE:
  2801. {
  2802. float f;
  2803. data_size = sizeof(float);
  2804. if ( mat->byteswap ) {
  2805. for ( i = 0; i < len; i++ ) {
  2806. bytesread += fread(&f,data_size,1,mat->fp);
  2807. data[i] = Mat_floatSwap(&f);
  2808. }
  2809. } else {
  2810. for ( i = 0; i < len; i++ ) {
  2811. bytesread += fread(&f,data_size,1,mat->fp);
  2812. data[i] = f;
  2813. }
  2814. }
  2815. break;
  2816. }
  2817. case MAT_T_INT32:
  2818. {
  2819. mat_int32_t i32;
  2820. data_size = sizeof(mat_int32_t);
  2821. if ( mat->byteswap ) {
  2822. for ( i = 0; i < len; i++ ) {
  2823. bytesread += fread(&i32,data_size,1,mat->fp);
  2824. data[i] = Mat_int32Swap(&i32);
  2825. }
  2826. } else {
  2827. for ( i = 0; i < len; i++ ) {
  2828. bytesread += fread(&i32,data_size,1,mat->fp);
  2829. data[i] = i32;
  2830. }
  2831. }
  2832. break;
  2833. }
  2834. case MAT_T_UINT32:
  2835. {
  2836. mat_uint32_t ui32;
  2837. data_size = sizeof(mat_uint32_t);
  2838. if ( mat->byteswap ) {
  2839. for ( i = 0; i < len; i++ ) {
  2840. bytesread += fread(&ui32,data_size,1,mat->fp);
  2841. data[i] = Mat_uint32Swap(&ui32);
  2842. }
  2843. } else {
  2844. for ( i = 0; i < len; i++ ) {
  2845. bytesread += fread(&ui32,data_size,1,mat->fp);
  2846. data[i] = ui32;
  2847. }
  2848. }
  2849. break;
  2850. }
  2851. case MAT_T_INT16:
  2852. {
  2853. mat_int16_t i16;
  2854. data_size = sizeof(mat_int16_t);
  2855. if ( mat->byteswap ) {
  2856. for ( i = 0; i < len; i++ ) {
  2857. bytesread += fread(&i16,data_size,1,mat->fp);
  2858. data[i] = Mat_int16Swap(&i16);
  2859. }
  2860. } else {
  2861. for ( i = 0; i < len; i++ ) {
  2862. bytesread += fread(&i16,data_size,1,mat->fp);
  2863. data[i] = i16;
  2864. }
  2865. }
  2866. break;
  2867. }
  2868. case MAT_T_UINT16:
  2869. {
  2870. mat_uint16_t ui16;
  2871. data_size = sizeof(mat_uint16_t);
  2872. if ( mat->byteswap ) {
  2873. for ( i = 0; i < len; i++ ) {
  2874. bytesread += fread(&ui16,data_size,1,mat->fp);
  2875. data[i] = Mat_uint16Swap(&ui16);
  2876. }
  2877. } else {
  2878. for ( i = 0; i < len; i++ ) {
  2879. bytesread += fread(&ui16,data_size,1,mat->fp);
  2880. data[i] = ui16;
  2881. }
  2882. }
  2883. break;
  2884. }
  2885. case MAT_T_INT8:
  2886. {
  2887. mat_int8_t i8;
  2888. data_size = sizeof(mat_int8_t);
  2889. if ( mat->byteswap ) {
  2890. for ( i = 0; i < len; i++ ) {
  2891. bytesread += fread(&i8,data_size,1,mat->fp);
  2892. data[i] = i8;
  2893. }
  2894. } else {
  2895. for ( i = 0; i < len; i++ ) {
  2896. bytesread += fread(&i8,data_size,1,mat->fp);
  2897. data[i] = i8;
  2898. }
  2899. }
  2900. break;
  2901. }
  2902. case MAT_T_UINT8:
  2903. {
  2904. mat_uint8_t ui8;
  2905. data_size = sizeof(mat_uint8_t);
  2906. if ( mat->byteswap ) {
  2907. for ( i = 0; i < len; i++ ) {
  2908. bytesread += fread(&ui8,data_size,1,mat->fp);
  2909. data[i] = ui8;
  2910. }
  2911. } else {
  2912. for ( i = 0; i < len; i++ ) {
  2913. bytesread += fread(&ui8,data_size,1,mat->fp);
  2914. data[i] = ui8;
  2915. }
  2916. }
  2917. break;
  2918. }
  2919. }
  2920. bytesread *= data_size;
  2921. return bytesread;
  2922. }
  2923. #if defined(HAVE_ZLIB)
  2924. /** @brief Reads data of type @c data_type into a signed 8-bit integer type
  2925. *
  2926. * Reads from the MAT file @c len compressed elements of data type @c data_type
  2927. * storing them as signed 8-bit integers in @c data.
  2928. * @ingroup mat_internal
  2929. * @param mat MAT file pointer
  2930. * @param z Pointer to the zlib stream for inflation
  2931. * @param data Pointer to store the output signed 8-bit integer values
  2932. * (len*sizeof(mat_int8_t))
  2933. * @param data_type one of the @c matio_types enumerations which is the source
  2934. * data type in the file
  2935. * @param len Number of elements of type @c data_type to read from the file
  2936. * @retval Number of bytes read from the file
  2937. */
  2938. int
  2939. ReadCompressedInt8Data(mat_t *mat,z_stream *z,mat_int8_t *data,
  2940. int data_type,int len)
  2941. {
  2942. int nBytes = 0, data_size = 0, i;
  2943. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  2944. return 0;
  2945. switch ( data_type ) {
  2946. case MAT_T_DOUBLE:
  2947. {
  2948. double d;
  2949. data_size = sizeof(double);
  2950. if ( mat->byteswap ) {
  2951. for ( i = 0; i < len; i++ ) {
  2952. InflateData(mat,z,&d,data_size);
  2953. data[i] = Mat_doubleSwap(&d);
  2954. }
  2955. } else {
  2956. for ( i = 0; i < len; i++ ) {
  2957. InflateData(mat,z,&d,data_size);
  2958. data[i] = d;
  2959. }
  2960. }
  2961. break;
  2962. }
  2963. case MAT_T_SINGLE:
  2964. {
  2965. float f;
  2966. data_size = sizeof(float);
  2967. if ( mat->byteswap ) {
  2968. for ( i = 0; i < len; i++ ) {
  2969. InflateData(mat,z,&f,data_size);
  2970. data[i] = Mat_floatSwap(&f);
  2971. }
  2972. } else {
  2973. for ( i = 0; i < len; i++ ) {
  2974. InflateData(mat,z,&f,data_size);
  2975. data[i] = f;
  2976. }
  2977. }
  2978. break;
  2979. }
  2980. case MAT_T_INT32:
  2981. {
  2982. mat_int32_t i32;
  2983. data_size = sizeof(mat_int32_t);
  2984. if ( mat->byteswap ) {
  2985. for ( i = 0; i < len; i++ ) {
  2986. InflateData(mat,z,&i32,data_size);
  2987. data[i] = Mat_int32Swap(&i32);
  2988. }
  2989. } else {
  2990. for ( i = 0; i < len; i++ ) {
  2991. InflateData(mat,z,&i32,data_size);
  2992. data[i] = i32;
  2993. }
  2994. }
  2995. break;
  2996. }
  2997. case MAT_T_UINT32:
  2998. {
  2999. mat_uint32_t ui32;
  3000. data_size = sizeof(mat_uint32_t);
  3001. if ( mat->byteswap ) {
  3002. for ( i = 0; i < len; i++ ) {
  3003. InflateData(mat,z,&ui32,data_size);
  3004. data[i] = Mat_uint32Swap(&ui32);
  3005. }
  3006. } else {
  3007. for ( i = 0; i < len; i++ ) {
  3008. InflateData(mat,z,&ui32,data_size);
  3009. data[i] = ui32;
  3010. }
  3011. }
  3012. break;
  3013. }
  3014. case MAT_T_INT16:
  3015. {
  3016. mat_int16_t i16;
  3017. data_size = sizeof(mat_int16_t);
  3018. if ( mat->byteswap ) {
  3019. for ( i = 0; i < len; i++ ) {
  3020. InflateData(mat,z,&i16,data_size);
  3021. data[i] = Mat_int16Swap(&i16);
  3022. }
  3023. } else {
  3024. for ( i = 0; i < len; i++ ) {
  3025. InflateData(mat,z,&i16,data_size);
  3026. data[i] = i16;
  3027. }
  3028. }
  3029. break;
  3030. }
  3031. case MAT_T_UINT16:
  3032. {
  3033. mat_uint16_t ui16;
  3034. data_size = sizeof(mat_uint16_t);
  3035. if ( mat->byteswap ) {
  3036. for ( i = 0; i < len; i++ ) {
  3037. InflateData(mat,z,&ui16,data_size);
  3038. data[i] = Mat_uint16Swap(&ui16);
  3039. }
  3040. } else {
  3041. for ( i = 0; i < len; i++ ) {
  3042. InflateData(mat,z,&ui16,data_size);
  3043. data[i] = ui16;
  3044. }
  3045. }
  3046. break;
  3047. }
  3048. case MAT_T_UINT8:
  3049. {
  3050. mat_uint8_t ui8;
  3051. data_size = sizeof(mat_uint8_t);
  3052. for ( i = 0; i < len; i++ ) {
  3053. InflateData(mat,z,&ui8,data_size);
  3054. data[i] = ui8;
  3055. }
  3056. break;
  3057. }
  3058. case MAT_T_INT8:
  3059. {
  3060. mat_int8_t i8;
  3061. data_size = sizeof(mat_int8_t);
  3062. for ( i = 0; i < len; i++ ) {
  3063. InflateData(mat,z,&i8,data_size);
  3064. data[i] = i8;
  3065. }
  3066. break;
  3067. }
  3068. }
  3069. nBytes = len*data_size;
  3070. return nBytes;
  3071. }
  3072. #endif
  3073. /** @brief Reads data of type @c data_type into an unsigned 8-bit integer type
  3074. *
  3075. * Reads from the MAT file @c len elements of data type @c data_type storing
  3076. * them as unsigned 8-bit integers in @c data.
  3077. * @ingroup mat_internal
  3078. * @param mat MAT file pointer
  3079. * @param data Pointer to store the output unsigned 8-bit integer values
  3080. * (len*sizeof(mat_uint8_t))
  3081. * @param data_type one of the @c matio_types enumerations which is the source
  3082. * data type in the file
  3083. * @param len Number of elements of type @c data_type to read from the file
  3084. * @retval Number of bytes read from the file
  3085. */
  3086. int
  3087. ReadUInt8Data(mat_t *mat,mat_uint8_t *data,int data_type,int len)
  3088. {
  3089. int bytesread = 0, data_size = 0, i;
  3090. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  3091. return 0;
  3092. switch ( data_type ) {
  3093. case MAT_T_DOUBLE:
  3094. {
  3095. double d;
  3096. data_size = sizeof(double);
  3097. if ( mat->byteswap ) {
  3098. for ( i = 0; i < len; i++ ) {
  3099. bytesread += fread(&d,data_size,1,mat->fp);
  3100. data[i] = Mat_doubleSwap(&d);
  3101. }
  3102. } else {
  3103. for ( i = 0; i < len; i++ ) {
  3104. bytesread += fread(&d,data_size,1,mat->fp);
  3105. data[i] = d;
  3106. }
  3107. }
  3108. break;
  3109. }
  3110. case MAT_T_SINGLE:
  3111. {
  3112. float f;
  3113. data_size = sizeof(float);
  3114. if ( mat->byteswap ) {
  3115. for ( i = 0; i < len; i++ ) {
  3116. bytesread += fread(&f,data_size,1,mat->fp);
  3117. data[i] = Mat_floatSwap(&f);
  3118. }
  3119. } else {
  3120. for ( i = 0; i < len; i++ ) {
  3121. bytesread += fread(&f,data_size,1,mat->fp);
  3122. data[i] = f;
  3123. }
  3124. }
  3125. break;
  3126. }
  3127. case MAT_T_INT32:
  3128. {
  3129. mat_int32_t i32;
  3130. data_size = sizeof(mat_int32_t);
  3131. if ( mat->byteswap ) {
  3132. for ( i = 0; i < len; i++ ) {
  3133. bytesread += fread(&i32,data_size,1,mat->fp);
  3134. data[i] = Mat_int32Swap(&i32);
  3135. }
  3136. } else {
  3137. for ( i = 0; i < len; i++ ) {
  3138. bytesread += fread(&i32,data_size,1,mat->fp);
  3139. data[i] = i32;
  3140. }
  3141. }
  3142. break;
  3143. }
  3144. case MAT_T_UINT32:
  3145. {
  3146. mat_uint32_t ui32;
  3147. data_size = sizeof(mat_uint32_t);
  3148. if ( mat->byteswap ) {
  3149. for ( i = 0; i < len; i++ ) {
  3150. bytesread += fread(&ui32,data_size,1,mat->fp);
  3151. data[i] = Mat_uint32Swap(&ui32);
  3152. }
  3153. } else {
  3154. for ( i = 0; i < len; i++ ) {
  3155. bytesread += fread(&ui32,data_size,1,mat->fp);
  3156. data[i] = ui32;
  3157. }
  3158. }
  3159. break;
  3160. }
  3161. case MAT_T_INT16:
  3162. {
  3163. mat_int16_t i16;
  3164. data_size = sizeof(mat_int16_t);
  3165. if ( mat->byteswap ) {
  3166. for ( i = 0; i < len; i++ ) {
  3167. bytesread += fread(&i16,data_size,1,mat->fp);
  3168. data[i] = Mat_int16Swap(&i16);
  3169. }
  3170. } else {
  3171. for ( i = 0; i < len; i++ ) {
  3172. bytesread += fread(&i16,data_size,1,mat->fp);
  3173. data[i] = i16;
  3174. }
  3175. }
  3176. break;
  3177. }
  3178. case MAT_T_UINT16:
  3179. {
  3180. mat_uint16_t ui16;
  3181. data_size = sizeof(mat_uint16_t);
  3182. if ( mat->byteswap ) {
  3183. for ( i = 0; i < len; i++ ) {
  3184. bytesread += fread(&ui16,data_size,1,mat->fp);
  3185. data[i] = Mat_uint16Swap(&ui16);
  3186. }
  3187. } else {
  3188. for ( i = 0; i < len; i++ ) {
  3189. bytesread += fread(&ui16,data_size,1,mat->fp);
  3190. data[i] = ui16;
  3191. }
  3192. }
  3193. break;
  3194. }
  3195. case MAT_T_INT8:
  3196. {
  3197. mat_int8_t i8;
  3198. data_size = sizeof(mat_int8_t);
  3199. if ( mat->byteswap ) {
  3200. for ( i = 0; i < len; i++ ) {
  3201. bytesread += fread(&i8,data_size,1,mat->fp);
  3202. data[i] = i8;
  3203. }
  3204. } else {
  3205. for ( i = 0; i < len; i++ ) {
  3206. bytesread += fread(&i8,data_size,1,mat->fp);
  3207. data[i] = i8;
  3208. }
  3209. }
  3210. break;
  3211. }
  3212. case MAT_T_UINT8:
  3213. {
  3214. mat_uint8_t ui8;
  3215. data_size = sizeof(mat_uint8_t);
  3216. if ( mat->byteswap ) {
  3217. for ( i = 0; i < len; i++ ) {
  3218. bytesread += fread(&ui8,data_size,1,mat->fp);
  3219. data[i] = ui8;
  3220. }
  3221. } else {
  3222. for ( i = 0; i < len; i++ ) {
  3223. bytesread += fread(&ui8,data_size,1,mat->fp);
  3224. data[i] = ui8;
  3225. }
  3226. }
  3227. break;
  3228. }
  3229. }
  3230. bytesread *= data_size;
  3231. return bytesread;
  3232. }
  3233. #if defined(HAVE_ZLIB)
  3234. /** @brief Reads data of type @c data_type into an unsigned 8-bit integer type
  3235. *
  3236. * Reads from the MAT file @c len compressed elements of data type @c data_type
  3237. * storing them as unsigned 8-bit integers in @c data.
  3238. * @ingroup mat_internal
  3239. * @param mat MAT file pointer
  3240. * @param z Pointer to the zlib stream for inflation
  3241. * @param data Pointer to store the output 8-bit integer values
  3242. * (len*sizeof(mat_uint8_t))
  3243. * @param data_type one of the @c matio_types enumerations which is the source
  3244. * data type in the file
  3245. * @param len Number of elements of type @c data_type to read from the file
  3246. * @retval Number of bytes read from the file
  3247. */
  3248. int
  3249. ReadCompressedUInt8Data(mat_t *mat,z_stream *z,mat_uint8_t *data,
  3250. int data_type,int len)
  3251. {
  3252. int nBytes = 0, data_size = 0, i;
  3253. if ( (mat == NULL) || (data == NULL) || (z == NULL) )
  3254. return 0;
  3255. switch ( data_type ) {
  3256. case MAT_T_DOUBLE:
  3257. {
  3258. double d;
  3259. data_size = sizeof(double);
  3260. if ( mat->byteswap ) {
  3261. for ( i = 0; i < len; i++ ) {
  3262. InflateData(mat,z,&d,data_size);
  3263. data[i] = Mat_doubleSwap(&d);
  3264. }
  3265. } else {
  3266. for ( i = 0; i < len; i++ ) {
  3267. InflateData(mat,z,&d,data_size);
  3268. data[i] = d;
  3269. }
  3270. }
  3271. break;
  3272. }
  3273. case MAT_T_SINGLE:
  3274. {
  3275. float f;
  3276. data_size = sizeof(float);
  3277. if ( mat->byteswap ) {
  3278. for ( i = 0; i < len; i++ ) {
  3279. InflateData(mat,z,&f,data_size);
  3280. data[i] = Mat_floatSwap(&f);
  3281. }
  3282. } else {
  3283. for ( i = 0; i < len; i++ ) {
  3284. InflateData(mat,z,&f,data_size);
  3285. data[i] = f;
  3286. }
  3287. }
  3288. break;
  3289. }
  3290. case MAT_T_INT32:
  3291. {
  3292. mat_int32_t i32;
  3293. data_size = sizeof(mat_int32_t);
  3294. if ( mat->byteswap ) {
  3295. for ( i = 0; i < len; i++ ) {
  3296. InflateData(mat,z,&i32,data_size);
  3297. data[i] = Mat_int32Swap(&i32);
  3298. }
  3299. } else {
  3300. for ( i = 0; i < len; i++ ) {
  3301. InflateData(mat,z,&i32,data_size);
  3302. data[i] = i32;
  3303. }
  3304. }
  3305. break;
  3306. }
  3307. case MAT_T_UINT32:
  3308. {
  3309. mat_uint32_t ui32;
  3310. data_size = sizeof(mat_uint32_t);
  3311. if ( mat->byteswap ) {
  3312. for ( i = 0; i < len; i++ ) {
  3313. InflateData(mat,z,&ui32,data_size);
  3314. data[i] = Mat_uint32Swap(&ui32);
  3315. }
  3316. } else {
  3317. for ( i = 0; i < len; i++ ) {
  3318. InflateData(mat,z,&ui32,data_size);
  3319. data[i] = ui32;
  3320. }
  3321. }
  3322. break;
  3323. }
  3324. case MAT_T_INT16:
  3325. {
  3326. mat_int16_t i16;
  3327. data_size = sizeof(mat_int16_t);
  3328. if ( mat->byteswap ) {
  3329. for ( i = 0; i < len; i++ ) {
  3330. InflateData(mat,z,&i16,data_size);
  3331. data[i] = Mat_int16Swap(&i16);
  3332. }
  3333. } else {
  3334. for ( i = 0; i < len; i++ ) {
  3335. InflateData(mat,z,&i16,data_size);
  3336. data[i] = i16;
  3337. }
  3338. }
  3339. break;
  3340. }
  3341. case MAT_T_UINT16:
  3342. {
  3343. mat_uint16_t ui16;
  3344. data_size = sizeof(mat_uint16_t);
  3345. if ( mat->byteswap ) {
  3346. for ( i = 0; i < len; i++ ) {
  3347. InflateData(mat,z,&ui16,data_size);
  3348. data[i] = Mat_uint16Swap(&ui16);
  3349. }
  3350. } else {
  3351. for ( i = 0; i < len; i++ ) {
  3352. InflateData(mat,z,&ui16,data_size);
  3353. data[i] = ui16;
  3354. }
  3355. }
  3356. break;
  3357. }
  3358. case MAT_T_UINT8:
  3359. {
  3360. mat_uint8_t ui8;
  3361. data_size = sizeof(mat_uint8_t);
  3362. for ( i = 0; i < len; i++ ) {
  3363. InflateData(mat,z,&ui8,data_size);
  3364. data[i] = ui8;
  3365. }
  3366. break;
  3367. }
  3368. case MAT_T_INT8:
  3369. {
  3370. mat_int8_t i8;
  3371. data_size = sizeof(mat_int8_t);
  3372. for ( i = 0; i < len; i++ ) {
  3373. InflateData(mat,z,&i8,data_size);
  3374. data[i] = i8;
  3375. }
  3376. break;
  3377. }
  3378. }
  3379. nBytes = len*data_size;
  3380. return nBytes;
  3381. }
  3382. #endif
  3383. #if defined(HAVE_ZLIB)
  3384. /** @brief Reads data of type @c data_type into a char type
  3385. *
  3386. * Reads from the MAT file @c len compressed elements of data type @c data_type
  3387. * storing them as char's in @c data.
  3388. * @ingroup mat_internal
  3389. * @param mat MAT file pointer
  3390. * @param z Pointer to the zlib stream for inflation
  3391. * @param data Pointer to store the output char values (len*sizeof(char))
  3392. * @param data_type one of the @c matio_types enumerations which is the source
  3393. * data type in the file
  3394. * @param len Number of elements of type @c data_type to read from the file
  3395. * @retval Number of bytes read from the file
  3396. */
  3397. int
  3398. ReadCompressedCharData(mat_t *mat,z_stream *z,char *data,int data_type,int len)
  3399. {
  3400. int nBytes = 0, data_size = 0, i;
  3401. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  3402. return 0;
  3403. switch ( data_type ) {
  3404. case MAT_T_UTF8:
  3405. data_size = 1;
  3406. for ( i = 0; i < len; i++ )
  3407. InflateData(mat,z,data+i,data_size);
  3408. break;
  3409. case MAT_T_INT8:
  3410. case MAT_T_UINT8:
  3411. data_size = 1;
  3412. for ( i = 0; i < len; i++ )
  3413. InflateData(mat,z,data+i,data_size);
  3414. break;
  3415. case MAT_T_INT16:
  3416. case MAT_T_UINT16:
  3417. {
  3418. mat_uint16_t i16;
  3419. data_size = 2;
  3420. if ( mat->byteswap ) {
  3421. for ( i = 0; i < len; i++ ) {
  3422. InflateData(mat,z,&i16,data_size);
  3423. data[i] = Mat_uint16Swap(&i16);
  3424. }
  3425. } else {
  3426. for ( i = 0; i < len; i++ ) {
  3427. InflateData(mat,z,&i16,data_size);
  3428. data[i] = i16;
  3429. }
  3430. }
  3431. break;
  3432. }
  3433. default:
  3434. printf("Character data not supported type: %d",data_type);
  3435. break;
  3436. }
  3437. nBytes = len*data_size;
  3438. return nBytes;
  3439. }
  3440. #endif
  3441. int
  3442. ReadCharData(mat_t *mat,char *data,int data_type,int len)
  3443. {
  3444. int bytesread = 0, data_size = 0, i;
  3445. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) )
  3446. return 0;
  3447. switch ( data_type ) {
  3448. case MAT_T_UTF8:
  3449. for ( i = 0; i < len; i++ )
  3450. bytesread += fread(data+i,1,1,mat->fp);
  3451. break;
  3452. case MAT_T_INT8:
  3453. case MAT_T_UINT8:
  3454. for ( i = 0; i < len; i++ )
  3455. bytesread += fread(data+i,1,1,mat->fp);
  3456. break;
  3457. case MAT_T_INT16:
  3458. case MAT_T_UINT16:
  3459. {
  3460. mat_uint16_t i16;
  3461. if ( mat->byteswap ) {
  3462. for ( i = 0; i < len; i++ ) {
  3463. bytesread += fread(&i16,2,1,mat->fp);
  3464. data[i] = Mat_uint16Swap(&i16);
  3465. }
  3466. } else {
  3467. for ( i = 0; i < len; i++ ) {
  3468. bytesread += fread(&i16,2,1,mat->fp);
  3469. data[i] = i16;
  3470. }
  3471. }
  3472. break;
  3473. }
  3474. default:
  3475. printf("Character data not supported type: %d",data_type);
  3476. break;
  3477. }
  3478. bytesread *= data_size;
  3479. return bytesread;
  3480. }
  3481. /*
  3482. *-------------------------------------------------------------------
  3483. * Routines to read "slabs" of data
  3484. *-------------------------------------------------------------------
  3485. */
  3486. /** @brief Reads data of type @c data_type by user-defined dimensions
  3487. *
  3488. * @ingroup mat_internal
  3489. * @param mat MAT file pointer
  3490. * @param data Pointer to store the output data
  3491. * @param class_type Type of data class (matio_classes enumerations)
  3492. * @param data_type Datatype of the stored data (matio_types enumerations)
  3493. * @param rank Number of dimensions in the data
  3494. * @param dims Dimensions of the data
  3495. * @param start Index to start reading data in each dimension
  3496. * @param stride Read every @c stride elements in each dimension
  3497. * @param edge Number of elements to read in each dimension
  3498. * @retval Number of bytes read from the file, or -1 on error
  3499. */
  3500. int
  3501. ReadDataSlabN(mat_t *mat,void *data,int class_type,int data_type,int rank,
  3502. int *dims,int *start,int *stride,int *edge)
  3503. {
  3504. int nBytes = 0, i, j, N, I = 0;
  3505. int inc[10] = {0,}, cnt[10] = {0,}, dimp[10] = {0,};
  3506. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) ||
  3507. (start == NULL) || (stride == NULL) || (edge == NULL) ) {
  3508. return -1;
  3509. } else if ( rank > 10 ) {
  3510. return -1;
  3511. }
  3512. switch ( class_type ) {
  3513. case MAT_C_DOUBLE:
  3514. {
  3515. inc[0] = stride[0]-1;
  3516. dimp[0] = dims[0];
  3517. N = edge[0];
  3518. I = start[0];
  3519. for ( i = 1; i < rank; i++ ) {
  3520. inc[i] = stride[i]-1;
  3521. dimp[i] = dims[i-1];
  3522. for ( j = i ; j--; ) {
  3523. inc[i] *= dims[j];
  3524. dimp[i] *= dims[j+1];
  3525. }
  3526. N *= edge[i];
  3527. I += dimp[i-1]*start[i];
  3528. }
  3529. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3530. for ( i = 0; i < N; i+=edge[0] ) {
  3531. for ( j = 0; j < edge[0]; j++ ) {
  3532. ReadDoubleData(mat,(double*)data+i+j,data_type,1);
  3533. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3534. I += stride[0];
  3535. }
  3536. I += dims[0]-edge[0]*stride[0]-start[0];
  3537. fseek(mat->fp,Mat_SizeOf(data_type)*
  3538. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3539. for ( j = 1; j < rank-1; j++ ) {
  3540. cnt[j]++;
  3541. if ( (cnt[j] % edge[j]) == 0 ) {
  3542. cnt[j] = 0;
  3543. if ( (I % dimp[j]) != 0 ) {
  3544. fseek(mat->fp,Mat_SizeOf(data_type)*
  3545. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3546. I += dimp[j]-(I % dimp[j]);
  3547. }
  3548. } else {
  3549. I += inc[j];
  3550. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3551. break;
  3552. }
  3553. }
  3554. }
  3555. break;
  3556. }
  3557. case MAT_C_SINGLE:
  3558. {
  3559. inc[0] = stride[0]-1;
  3560. dimp[0] = dims[0];
  3561. N = edge[0];
  3562. I = start[0];
  3563. for ( i = 1; i < rank; i++ ) {
  3564. inc[i] = stride[i]-1;
  3565. dimp[i] = dims[i-1];
  3566. for ( j = i ; j--; ) {
  3567. inc[i] *= dims[j];
  3568. dimp[i] *= dims[j+1];
  3569. }
  3570. N *= edge[i];
  3571. I += dimp[i-1]*start[i];
  3572. }
  3573. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3574. for ( i = 0; i < N; i+=edge[0] ) {
  3575. for ( j = 0; j < edge[0]; j++ ) {
  3576. ReadSingleData(mat,(float*)data+i+j,data_type,1);
  3577. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3578. I += stride[0];
  3579. }
  3580. I += dims[0]-edge[0]*stride[0]-start[0];
  3581. fseek(mat->fp,Mat_SizeOf(data_type)*
  3582. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3583. for ( j = 1; j < rank-1; j++ ) {
  3584. cnt[j]++;
  3585. if ( (cnt[j] % edge[j]) == 0 ) {
  3586. cnt[j] = 0;
  3587. if ( (I % dimp[j]) != 0 ) {
  3588. fseek(mat->fp,Mat_SizeOf(data_type)*
  3589. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3590. I += dimp[j]-(I % dimp[j]);
  3591. }
  3592. } else {
  3593. I += inc[j];
  3594. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3595. break;
  3596. }
  3597. }
  3598. }
  3599. break;
  3600. }
  3601. #ifdef HAVE_MAT_INT64_T
  3602. case MAT_C_INT64:
  3603. {
  3604. inc[0] = stride[0]-1;
  3605. dimp[0] = dims[0];
  3606. N = edge[0];
  3607. I = start[0];
  3608. for ( i = 1; i < rank; i++ ) {
  3609. inc[i] = stride[i]-1;
  3610. dimp[i] = dims[i-1];
  3611. for ( j = i ; j--; ) {
  3612. inc[i] *= dims[j];
  3613. dimp[i] *= dims[j+1];
  3614. }
  3615. N *= edge[i];
  3616. I += dimp[i-1]*start[i];
  3617. }
  3618. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3619. for ( i = 0; i < N; i+=edge[0] ) {
  3620. for ( j = 0; j < edge[0]; j++ ) {
  3621. ReadInt64Data(mat,(mat_int64_t*)data+i+j,data_type,1);
  3622. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3623. I += stride[0];
  3624. }
  3625. I += dims[0]-edge[0]*stride[0]-start[0];
  3626. fseek(mat->fp,Mat_SizeOf(data_type)*
  3627. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3628. for ( j = 1; j < rank-1; j++ ) {
  3629. cnt[j]++;
  3630. if ( (cnt[j] % edge[j]) == 0 ) {
  3631. cnt[j] = 0;
  3632. if ( (I % dimp[j]) != 0 ) {
  3633. fseek(mat->fp,Mat_SizeOf(data_type)*
  3634. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3635. I += dimp[j]-(I % dimp[j]);
  3636. }
  3637. } else {
  3638. I += inc[j];
  3639. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3640. break;
  3641. }
  3642. }
  3643. }
  3644. break;
  3645. }
  3646. #endif /* HAVE_MAT_INT64_T */
  3647. #ifdef HAVE_MAT_UINT64_T
  3648. case MAT_C_UINT64:
  3649. {
  3650. inc[0] = stride[0]-1;
  3651. dimp[0] = dims[0];
  3652. N = edge[0];
  3653. I = start[0];
  3654. for ( i = 1; i < rank; i++ ) {
  3655. inc[i] = stride[i]-1;
  3656. dimp[i] = dims[i-1];
  3657. for ( j = i ; j--; ) {
  3658. inc[i] *= dims[j];
  3659. dimp[i] *= dims[j+1];
  3660. }
  3661. N *= edge[i];
  3662. I += dimp[i-1]*start[i];
  3663. }
  3664. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3665. for ( i = 0; i < N; i+=edge[0] ) {
  3666. for ( j = 0; j < edge[0]; j++ ) {
  3667. ReadUInt64Data(mat,(mat_uint64_t*)data+i+j,data_type,1);
  3668. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3669. I += stride[0];
  3670. }
  3671. I += dims[0]-edge[0]*stride[0]-start[0];
  3672. fseek(mat->fp,Mat_SizeOf(data_type)*
  3673. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3674. for ( j = 1; j < rank-1; j++ ) {
  3675. cnt[j]++;
  3676. if ( (cnt[j] % edge[j]) == 0 ) {
  3677. cnt[j] = 0;
  3678. if ( (I % dimp[j]) != 0 ) {
  3679. fseek(mat->fp,Mat_SizeOf(data_type)*
  3680. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3681. I += dimp[j]-(I % dimp[j]);
  3682. }
  3683. } else {
  3684. I += inc[j];
  3685. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3686. break;
  3687. }
  3688. }
  3689. }
  3690. break;
  3691. }
  3692. #endif /* HAVE_MAT_UINT64_T */
  3693. case MAT_C_INT32:
  3694. {
  3695. inc[0] = stride[0]-1;
  3696. dimp[0] = dims[0];
  3697. N = edge[0];
  3698. I = start[0];
  3699. for ( i = 1; i < rank; i++ ) {
  3700. inc[i] = stride[i]-1;
  3701. dimp[i] = dims[i-1];
  3702. for ( j = i ; j--; ) {
  3703. inc[i] *= dims[j];
  3704. dimp[i] *= dims[j+1];
  3705. }
  3706. N *= edge[i];
  3707. I += dimp[i-1]*start[i];
  3708. }
  3709. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3710. for ( i = 0; i < N; i+=edge[0] ) {
  3711. for ( j = 0; j < edge[0]; j++ ) {
  3712. ReadInt32Data(mat,(mat_int32_t*)data+i+j,data_type,1);
  3713. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3714. I += stride[0];
  3715. }
  3716. I += dims[0]-edge[0]*stride[0]-start[0];
  3717. fseek(mat->fp,Mat_SizeOf(data_type)*
  3718. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3719. for ( j = 1; j < rank-1; j++ ) {
  3720. cnt[j]++;
  3721. if ( (cnt[j] % edge[j]) == 0 ) {
  3722. cnt[j] = 0;
  3723. if ( (I % dimp[j]) != 0 ) {
  3724. fseek(mat->fp,Mat_SizeOf(data_type)*
  3725. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3726. I += dimp[j]-(I % dimp[j]);
  3727. }
  3728. } else {
  3729. I += inc[j];
  3730. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3731. break;
  3732. }
  3733. }
  3734. }
  3735. break;
  3736. }
  3737. case MAT_C_UINT32:
  3738. {
  3739. inc[0] = stride[0]-1;
  3740. dimp[0] = dims[0];
  3741. N = edge[0];
  3742. I = start[0];
  3743. for ( i = 1; i < rank; i++ ) {
  3744. inc[i] = stride[i]-1;
  3745. dimp[i] = dims[i-1];
  3746. for ( j = i ; j--; ) {
  3747. inc[i] *= dims[j];
  3748. dimp[i] *= dims[j+1];
  3749. }
  3750. N *= edge[i];
  3751. I += dimp[i-1]*start[i];
  3752. }
  3753. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3754. for ( i = 0; i < N; i+=edge[0] ) {
  3755. for ( j = 0; j < edge[0]; j++ ) {
  3756. ReadUInt32Data(mat,(mat_uint32_t*)data+i+j,data_type,1);
  3757. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3758. I += stride[0];
  3759. }
  3760. I += dims[0]-edge[0]*stride[0]-start[0];
  3761. fseek(mat->fp,Mat_SizeOf(data_type)*
  3762. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3763. for ( j = 1; j < rank-1; j++ ) {
  3764. cnt[j]++;
  3765. if ( (cnt[j] % edge[j]) == 0 ) {
  3766. cnt[j] = 0;
  3767. if ( (I % dimp[j]) != 0 ) {
  3768. fseek(mat->fp,Mat_SizeOf(data_type)*
  3769. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3770. I += dimp[j]-(I % dimp[j]);
  3771. }
  3772. } else {
  3773. I += inc[j];
  3774. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3775. break;
  3776. }
  3777. }
  3778. }
  3779. break;
  3780. }
  3781. case MAT_C_INT16:
  3782. {
  3783. inc[0] = stride[0]-1;
  3784. dimp[0] = dims[0];
  3785. N = edge[0];
  3786. I = start[0];
  3787. for ( i = 1; i < rank; i++ ) {
  3788. inc[i] = stride[i]-1;
  3789. dimp[i] = dims[i-1];
  3790. for ( j = i ; j--; ) {
  3791. inc[i] *= dims[j];
  3792. dimp[i] *= dims[j+1];
  3793. }
  3794. N *= edge[i];
  3795. I += dimp[i-1]*start[i];
  3796. }
  3797. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3798. for ( i = 0; i < N; i+=edge[0] ) {
  3799. for ( j = 0; j < edge[0]; j++ ) {
  3800. ReadInt16Data(mat,(mat_int16_t*)data+i+j,data_type,1);
  3801. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3802. I += stride[0];
  3803. }
  3804. I += dims[0]-edge[0]*stride[0]-start[0];
  3805. fseek(mat->fp,Mat_SizeOf(data_type)*
  3806. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3807. for ( j = 1; j < rank-1; j++ ) {
  3808. cnt[j]++;
  3809. if ( (cnt[j] % edge[j]) == 0 ) {
  3810. cnt[j] = 0;
  3811. if ( (I % dimp[j]) != 0 ) {
  3812. fseek(mat->fp,Mat_SizeOf(data_type)*
  3813. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3814. I += dimp[j]-(I % dimp[j]);
  3815. }
  3816. } else {
  3817. I += inc[j];
  3818. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3819. break;
  3820. }
  3821. }
  3822. }
  3823. break;
  3824. }
  3825. case MAT_C_UINT16:
  3826. {
  3827. inc[0] = stride[0]-1;
  3828. dimp[0] = dims[0];
  3829. N = edge[0];
  3830. I = start[0];
  3831. for ( i = 1; i < rank; i++ ) {
  3832. inc[i] = stride[i]-1;
  3833. dimp[i] = dims[i-1];
  3834. for ( j = i ; j--; ) {
  3835. inc[i] *= dims[j];
  3836. dimp[i] *= dims[j+1];
  3837. }
  3838. N *= edge[i];
  3839. I += dimp[i-1]*start[i];
  3840. }
  3841. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3842. for ( i = 0; i < N; i+=edge[0] ) {
  3843. for ( j = 0; j < edge[0]; j++ ) {
  3844. ReadUInt16Data(mat,(mat_uint16_t*)data+i+j,data_type,1);
  3845. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3846. I += stride[0];
  3847. }
  3848. I += dims[0]-edge[0]*stride[0]-start[0];
  3849. fseek(mat->fp,Mat_SizeOf(data_type)*
  3850. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3851. for ( j = 1; j < rank-1; j++ ) {
  3852. cnt[j]++;
  3853. if ( (cnt[j] % edge[j]) == 0 ) {
  3854. cnt[j] = 0;
  3855. if ( (I % dimp[j]) != 0 ) {
  3856. fseek(mat->fp,Mat_SizeOf(data_type)*
  3857. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3858. I += dimp[j]-(I % dimp[j]);
  3859. }
  3860. } else {
  3861. I += inc[j];
  3862. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3863. break;
  3864. }
  3865. }
  3866. }
  3867. break;
  3868. }
  3869. case MAT_C_INT8:
  3870. {
  3871. inc[0] = stride[0]-1;
  3872. dimp[0] = dims[0];
  3873. N = edge[0];
  3874. I = start[0];
  3875. for ( i = 1; i < rank; i++ ) {
  3876. inc[i] = stride[i]-1;
  3877. dimp[i] = dims[i-1];
  3878. for ( j = i ; j--; ) {
  3879. inc[i] *= dims[j];
  3880. dimp[i] *= dims[j+1];
  3881. }
  3882. N *= edge[i];
  3883. I += dimp[i-1]*start[i];
  3884. }
  3885. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3886. for ( i = 0; i < N; i+=edge[0] ) {
  3887. for ( j = 0; j < edge[0]; j++ ) {
  3888. ReadInt8Data(mat,(mat_int8_t*)data+i+j,data_type,1);
  3889. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3890. I += stride[0];
  3891. }
  3892. I += dims[0]-edge[0]*stride[0]-start[0];
  3893. fseek(mat->fp,Mat_SizeOf(data_type)*
  3894. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3895. for ( j = 1; j < rank-1; j++ ) {
  3896. cnt[j]++;
  3897. if ( (cnt[j] % edge[j]) == 0 ) {
  3898. cnt[j] = 0;
  3899. if ( (I % dimp[j]) != 0 ) {
  3900. fseek(mat->fp,Mat_SizeOf(data_type)*
  3901. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3902. I += dimp[j]-(I % dimp[j]);
  3903. }
  3904. } else {
  3905. I += inc[j];
  3906. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3907. break;
  3908. }
  3909. }
  3910. }
  3911. break;
  3912. }
  3913. case MAT_C_UINT8:
  3914. {
  3915. inc[0] = stride[0]-1;
  3916. dimp[0] = dims[0];
  3917. N = edge[0];
  3918. I = start[0];
  3919. for ( i = 1; i < rank; i++ ) {
  3920. inc[i] = stride[i]-1;
  3921. dimp[i] = dims[i-1];
  3922. for ( j = i ; j--; ) {
  3923. inc[i] *= dims[j];
  3924. dimp[i] *= dims[j+1];
  3925. }
  3926. N *= edge[i];
  3927. I += dimp[i-1]*start[i];
  3928. }
  3929. fseek(mat->fp,I*Mat_SizeOf(data_type),SEEK_CUR);
  3930. for ( i = 0; i < N; i+=edge[0] ) {
  3931. for ( j = 0; j < edge[0]; j++ ) {
  3932. ReadUInt8Data(mat,(mat_uint8_t*)data+i+j,data_type,1);
  3933. fseek(mat->fp,Mat_SizeOf(data_type)*(stride[0]-1),SEEK_CUR);
  3934. I += stride[0];
  3935. }
  3936. I += dims[0]-edge[0]*stride[0]-start[0];
  3937. fseek(mat->fp,Mat_SizeOf(data_type)*
  3938. (dims[0]-edge[0]*stride[0]-start[0]),SEEK_CUR);
  3939. for ( j = 1; j < rank-1; j++ ) {
  3940. cnt[j]++;
  3941. if ( (cnt[j] % edge[j]) == 0 ) {
  3942. cnt[j] = 0;
  3943. if ( (I % dimp[j]) != 0 ) {
  3944. fseek(mat->fp,Mat_SizeOf(data_type)*
  3945. (dimp[j]-(I % dimp[j])),SEEK_CUR);
  3946. I += dimp[j]-(I % dimp[j]);
  3947. }
  3948. } else {
  3949. I += inc[j];
  3950. fseek(mat->fp,Mat_SizeOf(data_type)*inc[j],SEEK_CUR);
  3951. break;
  3952. }
  3953. }
  3954. }
  3955. break;
  3956. }
  3957. default:
  3958. nBytes = 0;
  3959. }
  3960. return nBytes;
  3961. }
  3962. #if defined(HAVE_ZLIB)
  3963. /** @brief Reads data of type @c data_type by user-defined dimensions
  3964. *
  3965. * @ingroup mat_internal
  3966. * @param mat MAT file pointer
  3967. * @param z zlib compression stream
  3968. * @param data Pointer to store the output data
  3969. * @param class_type Type of data class (matio_classes enumerations)
  3970. * @param data_type Datatype of the stored data (matio_types enumerations)
  3971. * @param rank Number of dimensions in the data
  3972. * @param dims Dimensions of the data
  3973. * @param start Index to start reading data in each dimension
  3974. * @param stride Read every @c stride elements in each dimension
  3975. * @param edge Number of elements to read in each dimension
  3976. * @retval Number of bytes read from the file, or -1 on error
  3977. */
  3978. int
  3979. ReadCompressedDataSlabN(mat_t *mat,z_stream *z,void *data,int class_type,
  3980. int data_type,int rank,int *dims,int *start,int *stride,int *edge)
  3981. {
  3982. int nBytes = 0, i, j, N, I = 0;
  3983. int inc[10] = {0,}, cnt[10] = {0,}, dimp[10] = {0,};
  3984. z_stream z_copy = {0,};
  3985. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) ||
  3986. (start == NULL) || (stride == NULL) || (edge == NULL) ) {
  3987. return 1;
  3988. } else if ( rank > 10 ) {
  3989. return 1;
  3990. }
  3991. i = inflateCopy(&z_copy,z);
  3992. switch ( class_type ) {
  3993. case MAT_C_DOUBLE:
  3994. {
  3995. double *ptr;
  3996. ptr = data;
  3997. inc[0] = stride[0]-1;
  3998. dimp[0] = dims[0];
  3999. N = edge[0];
  4000. I = start[0];
  4001. for ( i = 1; i < rank; i++ ) {
  4002. inc[i] = stride[i]-1;
  4003. dimp[i] = dims[i-1];
  4004. for ( j = i ; j--; ) {
  4005. inc[i] *= dims[j];
  4006. dimp[i] *= dims[j+1];
  4007. }
  4008. N *= edge[i];
  4009. I += dimp[i-1]*start[i];
  4010. }
  4011. /* Skip all data to the starting indeces */
  4012. InflateSkipData(mat,&z_copy,data_type,I);
  4013. for ( i = 0; i < N; i+=edge[0] ) {
  4014. for ( j = 0; j < edge[0]-1; j++ ) {
  4015. ReadCompressedDoubleData(mat,&z_copy,ptr+i+j,data_type,1);
  4016. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4017. I += stride[0];
  4018. }
  4019. ReadCompressedDoubleData(mat,&z_copy,ptr+i+j,data_type,1);
  4020. I += stride[0];
  4021. for ( j = 1; j < rank-1; j++ ) {
  4022. cnt[j]++;
  4023. if ( (cnt[j] % edge[j]) == 0 ) {
  4024. cnt[j] = 0;
  4025. if ( (I % dimp[j]) != 0 ) {
  4026. InflateSkipData(mat,&z_copy,data_type,
  4027. dimp[j]-(I % dimp[j]));
  4028. I += dimp[j]-(I % dimp[j]);
  4029. }
  4030. } else {
  4031. I += dims[0]-edge[0]*stride[0]-start[0];
  4032. InflateSkipData(mat,&z_copy,data_type,
  4033. dims[0]-edge[0]*stride[0]-start[0]);
  4034. I += inc[j];
  4035. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4036. break;
  4037. }
  4038. }
  4039. }
  4040. break;
  4041. }
  4042. case MAT_C_SINGLE:
  4043. {
  4044. float *ptr;
  4045. ptr = data;
  4046. inc[0] = stride[0]-1;
  4047. dimp[0] = dims[0];
  4048. N = edge[0];
  4049. I = start[0];
  4050. for ( i = 1; i < rank; i++ ) {
  4051. inc[i] = stride[i]-1;
  4052. dimp[i] = dims[i-1];
  4053. for ( j = i ; j--; ) {
  4054. inc[i] *= dims[j];
  4055. dimp[i] *= dims[j+1];
  4056. }
  4057. N *= edge[i];
  4058. I += dimp[i-1]*start[i];
  4059. }
  4060. /* Skip all data to the starting indeces */
  4061. InflateSkipData(mat,&z_copy,data_type,I);
  4062. for ( i = 0; i < N; i+=edge[0] ) {
  4063. for ( j = 0; j < edge[0]-1; j++ ) {
  4064. ReadCompressedSingleData(mat,&z_copy,ptr+i+j,data_type,1);
  4065. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4066. I += stride[0];
  4067. }
  4068. ReadCompressedSingleData(mat,&z_copy,ptr+i+j,data_type,1);
  4069. I += stride[0];
  4070. for ( j = 1; j < rank-1; j++ ) {
  4071. cnt[j]++;
  4072. if ( (cnt[j] % edge[j]) == 0 ) {
  4073. cnt[j] = 0;
  4074. if ( (I % dimp[j]) != 0 ) {
  4075. InflateSkipData(mat,&z_copy,data_type,
  4076. dimp[j]-(I % dimp[j]));
  4077. I += dimp[j]-(I % dimp[j]);
  4078. }
  4079. } else {
  4080. I += dims[0]-edge[0]*stride[0]-start[0];
  4081. InflateSkipData(mat,&z_copy,data_type,
  4082. dims[0]-edge[0]*stride[0]-start[0]);
  4083. I += inc[j];
  4084. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4085. break;
  4086. }
  4087. }
  4088. }
  4089. break;
  4090. }
  4091. #ifdef HAVE_MAT_INT64_T
  4092. case MAT_C_INT64:
  4093. {
  4094. mat_int64_t *ptr;
  4095. ptr = data;
  4096. inc[0] = stride[0]-1;
  4097. dimp[0] = dims[0];
  4098. N = edge[0];
  4099. I = start[0];
  4100. for ( i = 1; i < rank; i++ ) {
  4101. inc[i] = stride[i]-1;
  4102. dimp[i] = dims[i-1];
  4103. for ( j = i ; j--; ) {
  4104. inc[i] *= dims[j];
  4105. dimp[i] *= dims[j+1];
  4106. }
  4107. N *= edge[i];
  4108. I += dimp[i-1]*start[i];
  4109. }
  4110. /* Skip all data to the starting indeces */
  4111. InflateSkipData(mat,&z_copy,data_type,I);
  4112. for ( i = 0; i < N; i+=edge[0] ) {
  4113. for ( j = 0; j < edge[0]-1; j++ ) {
  4114. ReadCompressedInt64Data(mat,&z_copy,ptr+i+j,data_type,1);
  4115. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4116. I += stride[0];
  4117. }
  4118. ReadCompressedInt64Data(mat,&z_copy,ptr+i+j,data_type,1);
  4119. I += stride[0];
  4120. for ( j = 1; j < rank-1; j++ ) {
  4121. cnt[j]++;
  4122. if ( (cnt[j] % edge[j]) == 0 ) {
  4123. cnt[j] = 0;
  4124. if ( (I % dimp[j]) != 0 ) {
  4125. InflateSkipData(mat,&z_copy,data_type,
  4126. dimp[j]-(I % dimp[j]));
  4127. I += dimp[j]-(I % dimp[j]);
  4128. }
  4129. } else {
  4130. I += dims[0]-edge[0]*stride[0]-start[0];
  4131. InflateSkipData(mat,&z_copy,data_type,
  4132. dims[0]-edge[0]*stride[0]-start[0]);
  4133. I += inc[j];
  4134. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4135. break;
  4136. }
  4137. }
  4138. }
  4139. break;
  4140. }
  4141. #endif /* HAVE_MAT_INT64_T */
  4142. #ifdef HAVE_MAT_INT64_T
  4143. case MAT_C_UINT64:
  4144. {
  4145. mat_uint64_t *ptr;
  4146. ptr = data;
  4147. inc[0] = stride[0]-1;
  4148. dimp[0] = dims[0];
  4149. N = edge[0];
  4150. I = start[0];
  4151. for ( i = 1; i < rank; i++ ) {
  4152. inc[i] = stride[i]-1;
  4153. dimp[i] = dims[i-1];
  4154. for ( j = i ; j--; ) {
  4155. inc[i] *= dims[j];
  4156. dimp[i] *= dims[j+1];
  4157. }
  4158. N *= edge[i];
  4159. I += dimp[i-1]*start[i];
  4160. }
  4161. /* Skip all data to the starting indeces */
  4162. InflateSkipData(mat,&z_copy,data_type,I);
  4163. for ( i = 0; i < N; i+=edge[0] ) {
  4164. for ( j = 0; j < edge[0]-1; j++ ) {
  4165. ReadCompressedUInt64Data(mat,&z_copy,ptr+i+j,data_type,1);
  4166. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4167. I += stride[0];
  4168. }
  4169. ReadCompressedUInt64Data(mat,&z_copy,ptr+i+j,data_type,1);
  4170. I += stride[0];
  4171. for ( j = 1; j < rank-1; j++ ) {
  4172. cnt[j]++;
  4173. if ( (cnt[j] % edge[j]) == 0 ) {
  4174. cnt[j] = 0;
  4175. if ( (I % dimp[j]) != 0 ) {
  4176. InflateSkipData(mat,&z_copy,data_type,
  4177. dimp[j]-(I % dimp[j]));
  4178. I += dimp[j]-(I % dimp[j]);
  4179. }
  4180. } else {
  4181. I += dims[0]-edge[0]*stride[0]-start[0];
  4182. InflateSkipData(mat,&z_copy,data_type,
  4183. dims[0]-edge[0]*stride[0]-start[0]);
  4184. I += inc[j];
  4185. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4186. break;
  4187. }
  4188. }
  4189. }
  4190. break;
  4191. }
  4192. #endif /* HAVE_MAT_UINT64_T */
  4193. case MAT_C_INT32:
  4194. {
  4195. mat_int32_t *ptr;
  4196. ptr = data;
  4197. inc[0] = stride[0]-1;
  4198. dimp[0] = dims[0];
  4199. N = edge[0];
  4200. I = start[0];
  4201. for ( i = 1; i < rank; i++ ) {
  4202. inc[i] = stride[i]-1;
  4203. dimp[i] = dims[i-1];
  4204. for ( j = i ; j--; ) {
  4205. inc[i] *= dims[j];
  4206. dimp[i] *= dims[j+1];
  4207. }
  4208. N *= edge[i];
  4209. I += dimp[i-1]*start[i];
  4210. }
  4211. /* Skip all data to the starting indeces */
  4212. InflateSkipData(mat,&z_copy,data_type,I);
  4213. for ( i = 0; i < N; i+=edge[0] ) {
  4214. for ( j = 0; j < edge[0]-1; j++ ) {
  4215. ReadCompressedInt32Data(mat,&z_copy,ptr+i+j,data_type,1);
  4216. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4217. I += stride[0];
  4218. }
  4219. ReadCompressedInt32Data(mat,&z_copy,ptr+i+j,data_type,1);
  4220. I += stride[0];
  4221. for ( j = 1; j < rank-1; j++ ) {
  4222. cnt[j]++;
  4223. if ( (cnt[j] % edge[j]) == 0 ) {
  4224. cnt[j] = 0;
  4225. if ( (I % dimp[j]) != 0 ) {
  4226. InflateSkipData(mat,&z_copy,data_type,
  4227. dimp[j]-(I % dimp[j]));
  4228. I += dimp[j]-(I % dimp[j]);
  4229. }
  4230. } else {
  4231. I += dims[0]-edge[0]*stride[0]-start[0];
  4232. InflateSkipData(mat,&z_copy,data_type,
  4233. dims[0]-edge[0]*stride[0]-start[0]);
  4234. I += inc[j];
  4235. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4236. break;
  4237. }
  4238. }
  4239. }
  4240. break;
  4241. }
  4242. case MAT_C_UINT32:
  4243. {
  4244. mat_uint32_t *ptr;
  4245. ptr = data;
  4246. inc[0] = stride[0]-1;
  4247. dimp[0] = dims[0];
  4248. N = edge[0];
  4249. I = start[0];
  4250. for ( i = 1; i < rank; i++ ) {
  4251. inc[i] = stride[i]-1;
  4252. dimp[i] = dims[i-1];
  4253. for ( j = i ; j--; ) {
  4254. inc[i] *= dims[j];
  4255. dimp[i] *= dims[j+1];
  4256. }
  4257. N *= edge[i];
  4258. I += dimp[i-1]*start[i];
  4259. }
  4260. /* Skip all data to the starting indeces */
  4261. InflateSkipData(mat,&z_copy,data_type,I);
  4262. for ( i = 0; i < N; i+=edge[0] ) {
  4263. for ( j = 0; j < edge[0]-1; j++ ) {
  4264. ReadCompressedUInt32Data(mat,&z_copy,ptr+i+j,data_type,1);
  4265. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4266. I += stride[0];
  4267. }
  4268. ReadCompressedUInt32Data(mat,&z_copy,ptr+i+j,data_type,1);
  4269. I += stride[0];
  4270. for ( j = 1; j < rank-1; j++ ) {
  4271. cnt[j]++;
  4272. if ( (cnt[j] % edge[j]) == 0 ) {
  4273. cnt[j] = 0;
  4274. if ( (I % dimp[j]) != 0 ) {
  4275. InflateSkipData(mat,&z_copy,data_type,
  4276. dimp[j]-(I % dimp[j]));
  4277. I += dimp[j]-(I % dimp[j]);
  4278. }
  4279. } else {
  4280. I += dims[0]-edge[0]*stride[0]-start[0];
  4281. InflateSkipData(mat,&z_copy,data_type,
  4282. dims[0]-edge[0]*stride[0]-start[0]);
  4283. I += inc[j];
  4284. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4285. break;
  4286. }
  4287. }
  4288. }
  4289. break;
  4290. }
  4291. case MAT_C_INT16:
  4292. {
  4293. mat_int16_t *ptr;
  4294. ptr = data;
  4295. inc[0] = stride[0]-1;
  4296. dimp[0] = dims[0];
  4297. N = edge[0];
  4298. I = start[0];
  4299. for ( i = 1; i < rank; i++ ) {
  4300. inc[i] = stride[i]-1;
  4301. dimp[i] = dims[i-1];
  4302. for ( j = i ; j--; ) {
  4303. inc[i] *= dims[j];
  4304. dimp[i] *= dims[j+1];
  4305. }
  4306. N *= edge[i];
  4307. I += dimp[i-1]*start[i];
  4308. }
  4309. /* Skip all data to the starting indeces */
  4310. InflateSkipData(mat,&z_copy,data_type,I);
  4311. for ( i = 0; i < N; i+=edge[0] ) {
  4312. for ( j = 0; j < edge[0]-1; j++ ) {
  4313. ReadCompressedInt16Data(mat,&z_copy,ptr+i+j,data_type,1);
  4314. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4315. I += stride[0];
  4316. }
  4317. ReadCompressedInt16Data(mat,&z_copy,ptr+i+j,data_type,1);
  4318. I += stride[0];
  4319. for ( j = 1; j < rank-1; j++ ) {
  4320. cnt[j]++;
  4321. if ( (cnt[j] % edge[j]) == 0 ) {
  4322. cnt[j] = 0;
  4323. if ( (I % dimp[j]) != 0 ) {
  4324. InflateSkipData(mat,&z_copy,data_type,
  4325. dimp[j]-(I % dimp[j]));
  4326. I += dimp[j]-(I % dimp[j]);
  4327. }
  4328. } else {
  4329. I += dims[0]-edge[0]*stride[0]-start[0];
  4330. InflateSkipData(mat,&z_copy,data_type,
  4331. dims[0]-edge[0]*stride[0]-start[0]);
  4332. I += inc[j];
  4333. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4334. break;
  4335. }
  4336. }
  4337. }
  4338. break;
  4339. }
  4340. case MAT_C_UINT16:
  4341. {
  4342. mat_uint16_t *ptr;
  4343. ptr = data;
  4344. inc[0] = stride[0]-1;
  4345. dimp[0] = dims[0];
  4346. N = edge[0];
  4347. I = start[0];
  4348. for ( i = 1; i < rank; i++ ) {
  4349. inc[i] = stride[i]-1;
  4350. dimp[i] = dims[i-1];
  4351. for ( j = i ; j--; ) {
  4352. inc[i] *= dims[j];
  4353. dimp[i] *= dims[j+1];
  4354. }
  4355. N *= edge[i];
  4356. I += dimp[i-1]*start[i];
  4357. }
  4358. /* Skip all data to the starting indeces */
  4359. InflateSkipData(mat,&z_copy,data_type,I);
  4360. for ( i = 0; i < N; i+=edge[0] ) {
  4361. for ( j = 0; j < edge[0]-1; j++ ) {
  4362. ReadCompressedUInt16Data(mat,&z_copy,ptr+i+j,data_type,1);
  4363. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4364. I += stride[0];
  4365. }
  4366. ReadCompressedUInt16Data(mat,&z_copy,ptr+i+j,data_type,1);
  4367. I += stride[0];
  4368. for ( j = 1; j < rank-1; j++ ) {
  4369. cnt[j]++;
  4370. if ( (cnt[j] % edge[j]) == 0 ) {
  4371. cnt[j] = 0;
  4372. if ( (I % dimp[j]) != 0 ) {
  4373. InflateSkipData(mat,&z_copy,data_type,
  4374. dimp[j]-(I % dimp[j]));
  4375. I += dimp[j]-(I % dimp[j]);
  4376. }
  4377. } else {
  4378. I += dims[0]-edge[0]*stride[0]-start[0];
  4379. InflateSkipData(mat,&z_copy,data_type,
  4380. dims[0]-edge[0]*stride[0]-start[0]);
  4381. I += inc[j];
  4382. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4383. break;
  4384. }
  4385. }
  4386. }
  4387. break;
  4388. }
  4389. case MAT_C_INT8:
  4390. {
  4391. mat_int8_t *ptr;
  4392. ptr = data;
  4393. inc[0] = stride[0]-1;
  4394. dimp[0] = dims[0];
  4395. N = edge[0];
  4396. I = start[0];
  4397. for ( i = 1; i < rank; i++ ) {
  4398. inc[i] = stride[i]-1;
  4399. dimp[i] = dims[i-1];
  4400. for ( j = i ; j--; ) {
  4401. inc[i] *= dims[j];
  4402. dimp[i] *= dims[j+1];
  4403. }
  4404. N *= edge[i];
  4405. I += dimp[i-1]*start[i];
  4406. }
  4407. /* Skip all data to the starting indeces */
  4408. InflateSkipData(mat,&z_copy,data_type,I);
  4409. for ( i = 0; i < N; i+=edge[0] ) {
  4410. for ( j = 0; j < edge[0]-1; j++ ) {
  4411. ReadCompressedInt8Data(mat,&z_copy,ptr+i+j,data_type,1);
  4412. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4413. I += stride[0];
  4414. }
  4415. ReadCompressedInt8Data(mat,&z_copy,ptr+i+j,data_type,1);
  4416. I += stride[0];
  4417. for ( j = 1; j < rank-1; j++ ) {
  4418. cnt[j]++;
  4419. if ( (cnt[j] % edge[j]) == 0 ) {
  4420. cnt[j] = 0;
  4421. if ( (I % dimp[j]) != 0 ) {
  4422. InflateSkipData(mat,&z_copy,data_type,
  4423. dimp[j]-(I % dimp[j]));
  4424. I += dimp[j]-(I % dimp[j]);
  4425. }
  4426. } else {
  4427. I += dims[0]-edge[0]*stride[0]-start[0];
  4428. InflateSkipData(mat,&z_copy,data_type,
  4429. dims[0]-edge[0]*stride[0]-start[0]);
  4430. I += inc[j];
  4431. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4432. break;
  4433. }
  4434. }
  4435. }
  4436. break;
  4437. }
  4438. case MAT_C_UINT8:
  4439. {
  4440. mat_uint8_t *ptr;
  4441. ptr = data;
  4442. inc[0] = stride[0]-1;
  4443. dimp[0] = dims[0];
  4444. N = edge[0];
  4445. I = start[0];
  4446. for ( i = 1; i < rank; i++ ) {
  4447. inc[i] = stride[i]-1;
  4448. dimp[i] = dims[i-1];
  4449. for ( j = i ; j--; ) {
  4450. inc[i] *= dims[j];
  4451. dimp[i] *= dims[j+1];
  4452. }
  4453. N *= edge[i];
  4454. I += dimp[i-1]*start[i];
  4455. }
  4456. /* Skip all data to the starting indeces */
  4457. InflateSkipData(mat,&z_copy,data_type,I);
  4458. for ( i = 0; i < N; i+=edge[0] ) {
  4459. for ( j = 0; j < edge[0]-1; j++ ) {
  4460. ReadCompressedUInt8Data(mat,&z_copy,ptr+i+j,data_type,1);
  4461. InflateSkipData(mat,&z_copy,data_type,(stride[0]-1));
  4462. I += stride[0];
  4463. }
  4464. ReadCompressedUInt8Data(mat,&z_copy,ptr+i+j,data_type,1);
  4465. I += stride[0];
  4466. for ( j = 1; j < rank-1; j++ ) {
  4467. cnt[j]++;
  4468. if ( (cnt[j] % edge[j]) == 0 ) {
  4469. cnt[j] = 0;
  4470. if ( (I % dimp[j]) != 0 ) {
  4471. InflateSkipData(mat,&z_copy,data_type,
  4472. dimp[j]-(I % dimp[j]));
  4473. I += dimp[j]-(I % dimp[j]);
  4474. }
  4475. } else {
  4476. I += dims[0]-edge[0]*stride[0]-start[0];
  4477. InflateSkipData(mat,&z_copy,data_type,
  4478. dims[0]-edge[0]*stride[0]-start[0]);
  4479. I += inc[j];
  4480. InflateSkipData(mat,&z_copy,data_type,inc[j]);
  4481. break;
  4482. }
  4483. }
  4484. }
  4485. break;
  4486. }
  4487. default:
  4488. nBytes = 0;
  4489. }
  4490. inflateEnd(&z_copy);
  4491. return nBytes;
  4492. }
  4493. #endif
  4494. /** @brief Reads data of type @c data_type by user-defined dimensions for 2-D
  4495. * data
  4496. *
  4497. * @ingroup mat_internal
  4498. * @param mat MAT file pointer
  4499. * @param data Pointer to store the output data
  4500. * @param class_type Type of data class (matio_classes enumerations)
  4501. * @param data_type Datatype of the stored data (matio_types enumerations)
  4502. * @param dims Dimensions of the data
  4503. * @param start Index to start reading data in each dimension
  4504. * @param stride Read every @c stride elements in each dimension
  4505. * @param edge Number of elements to read in each dimension
  4506. * @retval Number of bytes read from the file, or -1 on error
  4507. */
  4508. int
  4509. ReadDataSlab2(mat_t *mat,void *data,int class_type,int data_type,
  4510. int *dims,int *start,int *stride,int *edge)
  4511. {
  4512. int nBytes = 0, data_size, i, j;
  4513. long pos, row_stride, col_stride;
  4514. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) ||
  4515. (start == NULL) || (stride == NULL) || (edge == NULL) ) {
  4516. return 0;
  4517. }
  4518. data_size = Mat_SizeOf(data_type);
  4519. switch ( class_type ) {
  4520. case MAT_C_DOUBLE:
  4521. {
  4522. double *ptr;
  4523. ptr = (double *)data;
  4524. row_stride = (stride[0]-1)*data_size;
  4525. col_stride = stride[1]*dims[0]*data_size;
  4526. pos = ftell(mat->fp);
  4527. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4528. for ( i = 0; i < edge[1]; i++ ) {
  4529. pos = ftell(mat->fp);
  4530. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4531. for ( j = 0; j < edge[0]; j++ ) {
  4532. ReadDoubleData(mat,ptr++,data_type,1);
  4533. fseek(mat->fp,row_stride,SEEK_CUR);
  4534. }
  4535. pos = pos+col_stride-ftell(mat->fp);
  4536. fseek(mat->fp,pos,SEEK_CUR);
  4537. }
  4538. break;
  4539. }
  4540. case MAT_C_SINGLE:
  4541. {
  4542. float *ptr;
  4543. ptr = (float *)data;
  4544. row_stride = (stride[0]-1)*data_size;
  4545. col_stride = stride[1]*dims[0]*data_size;
  4546. pos = ftell(mat->fp);
  4547. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4548. for ( i = 0; i < edge[1]; i++ ) {
  4549. pos = ftell(mat->fp);
  4550. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4551. for ( j = 0; j < edge[0]; j++ ) {
  4552. ReadSingleData(mat,ptr++,data_type,1);
  4553. fseek(mat->fp,row_stride,SEEK_CUR);
  4554. }
  4555. pos = pos+col_stride-ftell(mat->fp);
  4556. fseek(mat->fp,pos,SEEK_CUR);
  4557. }
  4558. break;
  4559. }
  4560. #ifdef HAVE_MAT_INT64_T
  4561. case MAT_C_INT64:
  4562. {
  4563. mat_int64_t *ptr;
  4564. ptr = (mat_int64_t *)data;
  4565. row_stride = (stride[0]-1)*data_size;
  4566. col_stride = stride[1]*dims[0]*data_size;
  4567. pos = ftell(mat->fp);
  4568. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4569. for ( i = 0; i < edge[1]; i++ ) {
  4570. pos = ftell(mat->fp);
  4571. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4572. for ( j = 0; j < edge[0]; j++ ) {
  4573. ReadInt64Data(mat,ptr++,data_type,1);
  4574. fseek(mat->fp,row_stride,SEEK_CUR);
  4575. }
  4576. pos = pos+col_stride-ftell(mat->fp);
  4577. fseek(mat->fp,pos,SEEK_CUR);
  4578. }
  4579. break;
  4580. }
  4581. #endif /* HAVE_MAT_INT64_T */
  4582. #ifdef HAVE_MAT_UINT64_T
  4583. case MAT_C_UINT64:
  4584. {
  4585. mat_uint64_t *ptr;
  4586. ptr = (mat_uint64_t *)data;
  4587. row_stride = (stride[0]-1)*data_size;
  4588. col_stride = stride[1]*dims[0]*data_size;
  4589. pos = ftell(mat->fp);
  4590. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4591. for ( i = 0; i < edge[1]; i++ ) {
  4592. pos = ftell(mat->fp);
  4593. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4594. for ( j = 0; j < edge[0]; j++ ) {
  4595. ReadUInt64Data(mat,ptr++,data_type,1);
  4596. fseek(mat->fp,row_stride,SEEK_CUR);
  4597. }
  4598. pos = pos+col_stride-ftell(mat->fp);
  4599. fseek(mat->fp,pos,SEEK_CUR);
  4600. }
  4601. break;
  4602. }
  4603. #endif /* HAVE_MAT_UINT64_T */
  4604. case MAT_C_INT32:
  4605. {
  4606. mat_int32_t *ptr;
  4607. ptr = (mat_int32_t *)data;
  4608. row_stride = (stride[0]-1)*data_size;
  4609. col_stride = stride[1]*dims[0]*data_size;
  4610. pos = ftell(mat->fp);
  4611. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4612. for ( i = 0; i < edge[1]; i++ ) {
  4613. pos = ftell(mat->fp);
  4614. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4615. for ( j = 0; j < edge[0]; j++ ) {
  4616. ReadInt32Data(mat,ptr++,data_type,1);
  4617. fseek(mat->fp,row_stride,SEEK_CUR);
  4618. }
  4619. pos = pos+col_stride-ftell(mat->fp);
  4620. fseek(mat->fp,pos,SEEK_CUR);
  4621. }
  4622. break;
  4623. }
  4624. case MAT_C_UINT32:
  4625. {
  4626. mat_uint32_t *ptr;
  4627. ptr = (mat_uint32_t *)data;
  4628. row_stride = (stride[0]-1)*data_size;
  4629. col_stride = stride[1]*dims[0]*data_size;
  4630. pos = ftell(mat->fp);
  4631. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4632. for ( i = 0; i < edge[1]; i++ ) {
  4633. pos = ftell(mat->fp);
  4634. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4635. for ( j = 0; j < edge[0]; j++ ) {
  4636. ReadUInt32Data(mat,ptr++,data_type,1);
  4637. fseek(mat->fp,row_stride,SEEK_CUR);
  4638. }
  4639. pos = pos+col_stride-ftell(mat->fp);
  4640. fseek(mat->fp,pos,SEEK_CUR);
  4641. }
  4642. break;
  4643. }
  4644. case MAT_C_INT16:
  4645. {
  4646. mat_int16_t *ptr;
  4647. ptr = (mat_int16_t *)data;
  4648. row_stride = (stride[0]-1)*data_size;
  4649. col_stride = stride[1]*dims[0]*data_size;
  4650. pos = ftell(mat->fp);
  4651. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4652. for ( i = 0; i < edge[1]; i++ ) {
  4653. pos = ftell(mat->fp);
  4654. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4655. for ( j = 0; j < edge[0]; j++ ) {
  4656. ReadInt16Data(mat,ptr++,data_type,1);
  4657. fseek(mat->fp,row_stride,SEEK_CUR);
  4658. }
  4659. pos = pos+col_stride-ftell(mat->fp);
  4660. fseek(mat->fp,pos,SEEK_CUR);
  4661. }
  4662. break;
  4663. }
  4664. case MAT_C_UINT16:
  4665. {
  4666. mat_uint16_t *ptr;
  4667. ptr = (mat_uint16_t *)data;
  4668. row_stride = (stride[0]-1)*data_size;
  4669. col_stride = stride[1]*dims[0]*data_size;
  4670. pos = ftell(mat->fp);
  4671. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4672. for ( i = 0; i < edge[1]; i++ ) {
  4673. pos = ftell(mat->fp);
  4674. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4675. for ( j = 0; j < edge[0]; j++ ) {
  4676. ReadUInt16Data(mat,ptr++,data_type,1);
  4677. fseek(mat->fp,row_stride,SEEK_CUR);
  4678. }
  4679. pos = pos+col_stride-ftell(mat->fp);
  4680. fseek(mat->fp,pos,SEEK_CUR);
  4681. }
  4682. break;
  4683. }
  4684. case MAT_C_INT8:
  4685. {
  4686. mat_int8_t *ptr;
  4687. ptr = (mat_int8_t *)data;
  4688. row_stride = (stride[0]-1)*data_size;
  4689. col_stride = stride[1]*dims[0]*data_size;
  4690. pos = ftell(mat->fp);
  4691. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4692. for ( i = 0; i < edge[1]; i++ ) {
  4693. pos = ftell(mat->fp);
  4694. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4695. for ( j = 0; j < edge[0]; j++ ) {
  4696. ReadInt8Data(mat,ptr++,data_type,1);
  4697. fseek(mat->fp,row_stride,SEEK_CUR);
  4698. }
  4699. pos = pos+col_stride-ftell(mat->fp);
  4700. fseek(mat->fp,pos,SEEK_CUR);
  4701. }
  4702. break;
  4703. }
  4704. case MAT_C_UINT8:
  4705. {
  4706. mat_uint8_t *ptr;
  4707. ptr = (mat_uint8_t *)data;
  4708. row_stride = (stride[0]-1)*data_size;
  4709. col_stride = stride[1]*dims[0]*data_size;
  4710. pos = ftell(mat->fp);
  4711. fseek(mat->fp,start[1]*dims[0]*data_size,SEEK_CUR);
  4712. for ( i = 0; i < edge[1]; i++ ) {
  4713. pos = ftell(mat->fp);
  4714. fseek(mat->fp,start[0]*data_size,SEEK_CUR);
  4715. for ( j = 0; j < edge[0]; j++ ) {
  4716. ReadUInt8Data(mat,ptr++,data_type,1);
  4717. fseek(mat->fp,row_stride,SEEK_CUR);
  4718. }
  4719. pos = pos+col_stride-ftell(mat->fp);
  4720. fseek(mat->fp,pos,SEEK_CUR);
  4721. }
  4722. break;
  4723. }
  4724. default:
  4725. nBytes = 0;
  4726. }
  4727. return nBytes;
  4728. }
  4729. #if defined(HAVE_ZLIB)
  4730. /** @brief Reads data of type @c data_type by user-defined dimensions for 2-D
  4731. * data
  4732. *
  4733. * @ingroup mat_internal
  4734. * @param mat MAT file pointer
  4735. * @param z zlib compression stream
  4736. * @param data Pointer to store the output data
  4737. * @param class_type Type of data class (matio_classes enumerations)
  4738. * @param data_type Datatype of the stored data (matio_types enumerations)
  4739. * @param dims Dimensions of the data
  4740. * @param start Index to start reading data in each dimension
  4741. * @param stride Read every @c stride elements in each dimension
  4742. * @param edge Number of elements to read in each dimension
  4743. * @retval Number of bytes read from the file, or -1 on error
  4744. */
  4745. int
  4746. ReadCompressedDataSlab2(mat_t *mat,z_stream *z,void *data,int class_type,
  4747. int data_type,int *dims,int *start,int *stride,int *edge)
  4748. {
  4749. int nBytes = 0, data_size, i, j, err;
  4750. int pos, row_stride, col_stride;
  4751. z_stream z_copy = {0,};
  4752. if ( (mat == NULL) || (data == NULL) || (mat->fp == NULL) ||
  4753. (start == NULL) || (stride == NULL) || (edge == NULL) ) {
  4754. return 0;
  4755. }
  4756. err = inflateCopy(&z_copy,z);
  4757. switch ( class_type ) {
  4758. case MAT_C_DOUBLE:
  4759. {
  4760. double *ptr;
  4761. data_size = sizeof(double);
  4762. ptr = data;
  4763. row_stride = (stride[0]-1);
  4764. col_stride = (stride[1]-1)*dims[0];
  4765. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4766. /* If stride[0] is 1 and stride[1] is 1, we are reading all of the
  4767. * data so get rid of the loops. If stride[0] is 1 and stride[1]
  4768. * is not 0, we are reading whole columns, so get rid of inner loop
  4769. * to speed up the code
  4770. */
  4771. #if 0
  4772. if ( (stride[0] == 1 && edge[0] == dims[0]) &&
  4773. (stride[1] == 1) ) {
  4774. ReadCompressedDoubleData(mat,&z_copy,ptr,data_type,
  4775. edge[0]*edge[1]);
  4776. } else if ( stride[0] == 1 ) {
  4777. for ( i = 0; i < edge[1]; i++ ) {
  4778. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4779. ReadCompressedDoubleData(mat,&z_copy,ptr,data_type,edge[0]);
  4780. ptr += edge[0];
  4781. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4782. InflateSkipData(mat,&z_copy,data_type,pos);
  4783. }
  4784. } else {
  4785. #endif
  4786. for ( i = 0; i < edge[1]; i++ ) {
  4787. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4788. for ( j = 0; j < edge[0]-1; j++ ) {
  4789. ReadCompressedDoubleData(mat,&z_copy,ptr++,data_type,1);
  4790. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4791. }
  4792. ReadCompressedDoubleData(mat,&z_copy,ptr++,data_type,1);
  4793. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4794. InflateSkipData(mat,&z_copy,data_type,pos);
  4795. }
  4796. #if 0
  4797. }
  4798. #endif
  4799. break;
  4800. }
  4801. case MAT_C_SINGLE:
  4802. {
  4803. float *ptr;
  4804. data_size = sizeof(float);
  4805. ptr = data;
  4806. row_stride = (stride[0]-1);
  4807. col_stride = (stride[1]-1)*dims[0];
  4808. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4809. for ( i = 0; i < edge[1]; i++ ) {
  4810. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4811. for ( j = 0; j < edge[0]-1; j++ ) {
  4812. ReadCompressedSingleData(mat,&z_copy,ptr++,data_type,1);
  4813. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4814. }
  4815. ReadCompressedSingleData(mat,&z_copy,ptr++,data_type,1);
  4816. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4817. InflateSkipData(mat,&z_copy,data_type,pos);
  4818. }
  4819. break;
  4820. }
  4821. #ifdef HAVE_MAT_UINT64_T
  4822. case MAT_C_INT64:
  4823. {
  4824. mat_int64_t *ptr;
  4825. data_size = sizeof(mat_int64_t);
  4826. ptr = data;
  4827. row_stride = (stride[0]-1);
  4828. col_stride = (stride[1]-1)*dims[0];
  4829. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4830. for ( i = 0; i < edge[1]; i++ ) {
  4831. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4832. for ( j = 0; j < edge[0]-1; j++ ) {
  4833. ReadCompressedInt64Data(mat,&z_copy,ptr++,data_type,1);
  4834. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4835. }
  4836. ReadCompressedInt64Data(mat,&z_copy,ptr++,data_type,1);
  4837. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4838. InflateSkipData(mat,&z_copy,data_type,pos);
  4839. }
  4840. break;
  4841. }
  4842. #endif /* HAVE_MAT_INT64_T */
  4843. #ifdef HAVE_MAT_UINT64_T
  4844. case MAT_C_UINT64:
  4845. {
  4846. mat_uint64_t *ptr;
  4847. data_size = sizeof(mat_uint64_t);
  4848. ptr = data;
  4849. row_stride = (stride[0]-1);
  4850. col_stride = (stride[1]-1)*dims[0];
  4851. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4852. for ( i = 0; i < edge[1]; i++ ) {
  4853. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4854. for ( j = 0; j < edge[0]-1; j++ ) {
  4855. ReadCompressedUInt64Data(mat,&z_copy,ptr++,data_type,1);
  4856. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4857. }
  4858. ReadCompressedUInt64Data(mat,&z_copy,ptr++,data_type,1);
  4859. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4860. InflateSkipData(mat,&z_copy,data_type,pos);
  4861. }
  4862. break;
  4863. }
  4864. #endif /* HAVE_MAT_UINT64_T */
  4865. case MAT_C_INT32:
  4866. {
  4867. mat_int32_t *ptr;
  4868. data_size = sizeof(mat_int32_t);
  4869. ptr = data;
  4870. row_stride = (stride[0]-1);
  4871. col_stride = (stride[1]-1)*dims[0];
  4872. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4873. for ( i = 0; i < edge[1]; i++ ) {
  4874. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4875. for ( j = 0; j < edge[0]-1; j++ ) {
  4876. ReadCompressedInt32Data(mat,&z_copy,ptr++,data_type,1);
  4877. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4878. }
  4879. ReadCompressedInt32Data(mat,&z_copy,ptr++,data_type,1);
  4880. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4881. InflateSkipData(mat,&z_copy,data_type,pos);
  4882. }
  4883. break;
  4884. }
  4885. case MAT_C_UINT32:
  4886. {
  4887. mat_uint32_t *ptr;
  4888. data_size = sizeof(mat_uint32_t);
  4889. ptr = data;
  4890. row_stride = (stride[0]-1);
  4891. col_stride = (stride[1]-1)*dims[0];
  4892. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4893. for ( i = 0; i < edge[1]; i++ ) {
  4894. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4895. for ( j = 0; j < edge[0]-1; j++ ) {
  4896. ReadCompressedUInt32Data(mat,&z_copy,ptr++,data_type,1);
  4897. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4898. }
  4899. ReadCompressedUInt32Data(mat,&z_copy,ptr++,data_type,1);
  4900. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4901. InflateSkipData(mat,&z_copy,data_type,pos);
  4902. }
  4903. break;
  4904. }
  4905. case MAT_C_INT16:
  4906. {
  4907. mat_int16_t *ptr;
  4908. data_size = sizeof(mat_int16_t);
  4909. ptr = data;
  4910. row_stride = (stride[0]-1);
  4911. col_stride = (stride[1]-1)*dims[0];
  4912. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4913. for ( i = 0; i < edge[1]; i++ ) {
  4914. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4915. for ( j = 0; j < edge[0]-1; j++ ) {
  4916. ReadCompressedInt16Data(mat,&z_copy,ptr++,data_type,1);
  4917. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4918. }
  4919. ReadCompressedInt16Data(mat,&z_copy,ptr++,data_type,1);
  4920. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4921. InflateSkipData(mat,&z_copy,data_type,pos);
  4922. }
  4923. break;
  4924. }
  4925. case MAT_C_UINT16:
  4926. {
  4927. mat_uint16_t *ptr;
  4928. data_size = sizeof(mat_uint16_t);
  4929. ptr = data;
  4930. row_stride = (stride[0]-1);
  4931. col_stride = (stride[1]-1)*dims[0];
  4932. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4933. for ( i = 0; i < edge[1]; i++ ) {
  4934. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4935. for ( j = 0; j < edge[0]-1; j++ ) {
  4936. ReadCompressedUInt16Data(mat,&z_copy,ptr++,data_type,1);
  4937. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4938. }
  4939. ReadCompressedUInt16Data(mat,&z_copy,ptr++,data_type,1);
  4940. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4941. InflateSkipData(mat,&z_copy,data_type,pos);
  4942. }
  4943. break;
  4944. }
  4945. case MAT_C_INT8:
  4946. {
  4947. mat_int8_t *ptr;
  4948. data_size = sizeof(mat_int8_t);
  4949. ptr = data;
  4950. row_stride = (stride[0]-1);
  4951. col_stride = (stride[1]-1)*dims[0];
  4952. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4953. for ( i = 0; i < edge[1]; i++ ) {
  4954. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4955. for ( j = 0; j < edge[0]-1; j++ ) {
  4956. ReadCompressedInt8Data(mat,&z_copy,ptr++,data_type,1);
  4957. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4958. }
  4959. ReadCompressedInt8Data(mat,&z_copy,ptr++,data_type,1);
  4960. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4961. InflateSkipData(mat,&z_copy,data_type,pos);
  4962. }
  4963. break;
  4964. }
  4965. case MAT_C_UINT8:
  4966. {
  4967. mat_uint8_t *ptr;
  4968. data_size = sizeof(mat_uint8_t);
  4969. ptr = data;
  4970. row_stride = (stride[0]-1);
  4971. col_stride = (stride[1]-1)*dims[0];
  4972. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4973. for ( i = 0; i < edge[1]; i++ ) {
  4974. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4975. for ( j = 0; j < edge[0]-1; j++ ) {
  4976. ReadCompressedUInt8Data(mat,&z_copy,ptr++,data_type,1);
  4977. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4978. }
  4979. ReadCompressedUInt8Data(mat,&z_copy,ptr++,data_type,1);
  4980. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  4981. InflateSkipData(mat,&z_copy,data_type,pos);
  4982. }
  4983. break;
  4984. }
  4985. case MAT_C_CHAR:
  4986. {
  4987. char *ptr;
  4988. data_size = 1;
  4989. ptr = data;
  4990. row_stride = (stride[0]-1);
  4991. col_stride = (stride[1]-1)*dims[0];
  4992. InflateSkipData(mat,&z_copy,data_type,start[1]*dims[0]);
  4993. for ( i = 0; i < edge[1]; i++ ) {
  4994. InflateSkipData(mat,&z_copy,data_type,start[0]);
  4995. for ( j = 0; j < edge[0]-1; j++ ) {
  4996. ReadCompressedCharData(mat,&z_copy,ptr++,data_type,1);
  4997. InflateSkipData(mat,&z_copy,data_type,stride[0]-1);
  4998. }
  4999. ReadCompressedCharData(mat,&z_copy,ptr++,data_type,1);
  5000. pos = dims[0]-(edge[0]-1)*stride[0]-1-start[0] + col_stride;
  5001. InflateSkipData(mat,&z_copy,data_type,pos);
  5002. }
  5003. break;
  5004. }
  5005. default:
  5006. nBytes = 0;
  5007. }
  5008. inflateEnd(&z_copy);
  5009. return nBytes;
  5010. }
  5011. #endif