123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- /**
- * @file RTBMinDist.cpp
- * @brief random regression tree; split criterion is to minimize mean distance of all examples of an inner node
- * @author Frank Prüfer
- * @date 09/17/2013
- */
- #include <iostream>
- #include "RTBMinDist.h"
- using namespace OBJREC;
- #undef DEBUGTREE
- #undef DETAILTREE
- using namespace std;
- using namespace NICE;
- RTBMinDist::RTBMinDist( const Config *conf, std::string section )
- {
- random_split_tests = conf->gI(section, "random_split_tests", 10 );
- random_features = conf->gI(section, "random_features", 500 );
- max_depth = conf->gI(section, "max_depth", 10 );
- min_examples = conf->gI(section, "min_examples", 50);
- minimum_distance_reduction = conf->gD("RandomForest", "minimum_distance_reduction", 10e-3 );
-
- if ( conf->gB(section, "start_random_generator", false ) )
- srand(time(NULL));
- }
- RTBMinDist::~RTBMinDist()
- {
- }
- void RTBMinDist::computeDistanceToPrototype( const vector<double> &fvalues,
- const int &countEx,
- double &dist )
- {
- double prototype = 0.0;
- for ( int i = 0; i < countEx; i++ ){
- prototype += fvalues[i];
- }
- prototype /= (double)countEx;
- for ( int i = 0; i < countEx; i++ ){
- dist += abs(prototype - fvalues[i]);
- }
- dist /= (double)countEx;
- }
- bool RTBMinDist::averageDistanceLeftRight(const vector< pair< double, int > > values,
- double threshold,
- double& avg_dist_left,
- double& avg_dist_right,
- int& count_left,
- int& count_right)
- {
- count_left = 0;
- count_right = 0;
- vector<int> selection_left;
- vector<int> selection_right;
- vector<double> values_left;
- vector<double> values_right;
-
- for ( vector< pair< double, int > >::const_iterator it = values.begin();
- it != values.end(); it++ )
- {
- double value = it->first;
- if ( value < threshold )
- {
- count_left++;
- selection_left.push_back( it->second );
- values_left.push_back( it->first );
- }
- else
- {
- count_right++;
- selection_right.push_back( it->second );
- values_right.push_back( it->first );
- }
- }
-
- if ( (count_left == 0) || (count_right == 0) )
- return false; // no split
-
- if ( (count_left < min_examples) || (count_right < min_examples) )
- return false; // no split
-
- //compute mean distance of left and right group to respective prototype
- computeDistanceToPrototype( values_left, count_left, avg_dist_left);
- computeDistanceToPrototype( values_right, count_right, avg_dist_right);
-
- return true;
- }
- RegressionNode *RTBMinDist::buildRecursive ( const NICE::VVector & x,
- const NICE::Vector & y,
- std::vector<int> & selection,
- int depth)
- {
- #ifdef DEBUGTREE
- fprintf (stderr, "Examples: %d (depth %d)\n", (int)selection.size(),
- (int)depth);
- #endif
-
- RegressionNode *node = new RegressionNode ();
- node->nodePrediction( y, selection );
- if ( depth > max_depth )
- {
- #ifdef DEBUGTREE
- fprintf (stderr, "RTBMinDist: maxmimum depth reached !\n");
- #endif
- node->trainExamplesIndices = selection;
- return node;
- }
-
- if ( (int)selection.size() < min_examples )
- {
- #ifdef DEBUGTREE
- fprintf (stderr, "RTBMinDist: minimum examples reached %d < %d !\n",
- (int)selection.size(), min_examples );
- #endif
- node->trainExamplesIndices = selection;
- return node;
- }
- int best_feature = 0;
- double best_threshold = 0.0;
- double best_reduct = -1.0;
- // vector<pair<double, int> > best_values;
- vector<pair<double, int> > values;
- double distance_left = 0.0;
- double distance_right = 0.0;
-
- for ( int k = 0; k < random_features; k++ )
- {
- #ifdef DETAILTREE
- fprintf (stderr, "calculating random feature %d\n", k );
- #endif
- int f = rand() % x[0].size();
-
- values.clear();
- collectFeatureValues ( x, selection, f, values );
- double curDist = 0.0;
- vector<double> fvalues;
- for ( vector< pair< double, int > >::const_iterator it = values.begin();
- it != values.end(); it++ )
- {
- fvalues.push_back(it->first);
- }
- computeDistanceToPrototype( fvalues, (int)values.size(), curDist );
-
- double minValue = (min_element ( values.begin(), values.end() ))->first;
- double maxValue = (max_element ( values.begin(), values.end() ))->first;
-
- #ifdef DETAILTREE
- fprintf (stderr, "max %f min %f\n", maxValue, minValue );
- #endif
- if ( maxValue - minValue < 1e-7 ) continue;
-
- for ( int i = 0; i < random_split_tests; i++ )
- {
- double threshold;
- threshold = rand() * (maxValue -minValue ) / RAND_MAX + minValue;
-
- #ifdef DETAILTREE
- fprintf (stderr, "calculating split f/s(f) %d/%d %f\n", k, i, threshold );
- #endif
- distance_left = 0.0;
- distance_right = 0.0;
-
- int count_left, count_right;
- if ( ! averageDistanceLeftRight( values, threshold, distance_left,
- distance_right, count_left, count_right) )
- continue;
-
- //double pl = (count_left) / (count_left +count_right);
- //double errorReduction = lsError - pl*lsError_left - (1-pl)*lsError_right;
- double distReduction = curDist - distance_left - distance_right;
-
- if ( distReduction > best_reduct )
- {
- best_reduct = distReduction;
- best_threshold = threshold;
- best_feature = f;
- #ifdef DETAILTREE
- fprintf (stderr, "t %f for feature %i\n", best_threshold, best_feature );
- #endif
- }
- }
- }
-
- if ( best_reduct < minimum_distance_reduction )
- {
- #ifdef DEBUGTREE
- fprintf (stderr, "RTBMinDist: distance reduction to small !\n");
- #endif
- node->trainExamplesIndices = selection;
- return node;
- }
-
- node->f = best_feature;
- node->threshold = best_threshold;
-
- // re calculating examples_left and examples_right
- vector<int> best_examples_left;
- vector<int> best_examples_right;
- values.clear();
- collectFeatureValues( x, selection, best_feature, values);
-
- best_examples_left.reserve ( values.size() / 2 );
- best_examples_right.reserve ( values.size() / 2 );
-
- for ( vector< pair < double, int > >::const_iterator it = values.begin();
- it != values.end(); it++ )
- {
- double value = it->first;
- if ( value < best_threshold )
- best_examples_left.push_back( it->second );
- else
- best_examples_right.push_back( it->second );
- }
-
- node->left = buildRecursive( x, y, best_examples_left, depth+1 );
- node->right = buildRecursive( x, y, best_examples_right, depth+1 );
-
- return node;
- }
- RegressionNode *RTBMinDist::build( const NICE::VVector & x,
- const NICE::Vector & y )
- {
- int index = 0;
-
- vector<int> all;
- all.reserve ( y.size() );
- for ( uint i = 0; i < y.size(); i++ )
- {
- all.push_back( index );
- index++;
- }
-
- return buildRecursive( x, y, all, 0);
- }
-
|