Browse Source

Merge branch 'master' of triton.inf-cv.uni-jena.de:Fine-grained/nabirds

Dimitri Korsch 6 years ago
parent
commit
90ce01b982
1 changed files with 158 additions and 3 deletions
  1. 158 3
      README.md

+ 158 - 3
README.md

@@ -1,5 +1,160 @@
-# NA-Birds dataset wrapper
+# [NA-Birds](http://dl.allaboutbirds.org/nabirds) dataset wrapper
 
-NA-Birds dataset:  http://dl.allaboutbirds.org/nabirds
+For more deatils to see how to use this library take a look at [nabirds/display.py](nabirds/display.py).
 
-Some example code how to use this library can be found in `example_nab.py` or `example_cub.py`
+## Annotation and Image Loading
+
+Here is some example code how to load images and use the predefined train-test split.
+
+```python
+# replace NAB_Annotations with CUB_Annotations to load CUB200-2011 annotations
+from nabirds import NAB_Annotations, Dataset
+
+annot = NAB_Annotations("path/to/nab/folder")
+
+train_data = Dataset(annot.train_uuids, annot)
+test_data = Dataset(annot.test_uuids, annot)
+
+print("Loaded {} training and {} test images".format(len(train_data), len(test_data)))
+```
+
+## Dataset Iteration
+```python
+import matplotlib.pyplot as plt
+
+# either access the images directly
+im, parts, label = test_data[100]
+plt.imshow(im)
+plt.show()
+
+# or iterate over the dataset
+for im, parts, label in train_data:
+    plt.imshow(im)
+    plt.show()
+
+```
+
+## Working with Part Annotations
+Both datasets (NAB and CUB) have part annotations. Each annotation has for each of the predefined parts the location of this part and a boolean (`0` or `1`) value whether this part is visible. A [`Dataset`](nabirds/dataset/__init__.py#L5) instance returns besides the image and the class label this information:
+
+```python
+
+im, parts, label = train_data[100]
+
+print(parts)
+# array([[  0, 529, 304,   1],
+#        [  1, 427, 277,   1],
+#        [  2, 368, 323,   1],
+#        [  3,   0,   0,   0],
+#        [  4, 449, 292,   1],
+#        [  5, 398, 502,   1],
+#        [  6, 430, 398,   1],
+#        [  7,   0,   0,   0],
+#        [  8, 365, 751,   1],
+#        [  9,   0,   0,   0],
+#        [ 10,   0,   0,   0]])
+
+```
+### Visible Parts
+
+In order to filter by only visible parts use the [`utils.visible_part_locs`](nabirds/dataset/utils.py#L28) function. It returns the indices and the x-y positions of the visible parts:
+
+```python
+from nabirds import utils
+
+idxs, xy = utils.visible_part_locs(parts)
+
+print(idxs)
+# array([0, 1, 2, 4, 5, 6, 8])
+print(xy)
+# array([[529, 427, 368, 449, 398, 430, 365],
+#        [304, 277, 323, 292, 502, 398, 751]])
+
+x, y = xy
+plt.imshow(im)
+plt.scatter(x,y, marker="x", c=idxs)
+plt.show()
+```
+
+### Uniform Parts
+In case you don't want to use the ground truth parts, you can generate parts uniformly distributed over the image. Here you need to pass the image as well as the ratio, which tells how many parts will be extracted (ratio of `1/5` extracts 5 by 5 parts, resulting in 25 parts). In case of uniform parts all of them are visible.
+
+
+```python
+from nabirds import utils
+
+parts = utils.uniform_parts(im, ratio=1/3)
+idxs, xy = utils.visible_part_locs(parts)
+
+print(idxs)
+# array([0, 1, 2, 3, 4, 5, 6, 7, 8])
+print(xy)
+# array([[140, 420, 700, 140, 420, 700, 140, 420, 700],
+#        [166, 166, 166, 499, 499, 499, 832, 832, 832]])
+
+x, y = xy
+plt.imshow(im)
+plt.scatter(x,y, marker="x", c=idxs)
+plt.show()
+```
+
+### Crop Extraction
+From the locations we can also extract some crops. Same as in [`utils.uniform_parts`](nabirds/dataset/utils.py#L9) you have to give a ratio with which the crops around the locations are created:
+
+```python
+from nabirds import utils
+
+part_crops = utils.visible_crops(im, parts, ratio=0.2)
+
+fig = plt.figure(figsize=(16,9))
+n_crops = part_crops.shape[0]
+rows = int(np.ceil(np.sqrt(n_crops)))
+cols = int(np.ceil(n_crops / rows))
+
+for j, crop in enumerate(part_crops, 1):
+    ax = fig.add_subplot(rows, cols, j)
+    ax.imshow(crop)
+    ax.axis("off")
+
+plt.show()
+```
+
+
+### Random Crops
+In some cases randomly selected crops are desired. Here you can use the [`utils.random_select`](nabirds/dataset/utils.py#L68) function. As optional argument you can also pass a `rnd` argument, that can be an integer (indicating a random seed) or a `numpy.random.RandomState` instance. Additionally, you can also determine the number of crops that will be selected (default is to select random number of crops).
+
+```python
+from nabirds import utils
+
+rnd_idxs, rnd_xy, rnd_part_crops = utils.random_select(idxs, xy, part_crops)
+
+fig = plt.figure(figsize=(16,9))
+
+n_crops = part_crops.shape[0]
+rows = int(np.ceil(np.sqrt(n_crops)))
+cols = int(np.ceil(n_crops / rows))
+
+for j, crop in zip(rnd_idxs, rnd_part_crops):
+    ax = fig.add_subplot(rows, cols, j + 1)
+    ax.imshow(crop)
+    ax.axis("off")
+
+plt.show()
+```
+
+
+### Revealing of the Parts
+In order to create a single image, that consist of the given parts on their correct location use [`utils.reveal_parts`](nabirds/dataset/utils.py#L57) function. It requires again besides the original image and the locations the ratio with which the parts around the locations should be revealed:
+
+```python
+
+plt.imshow(reveal_parts(im, xy, ratio=0.2))
+plt.show()
+
+plt.imshow(reveal_parts(im, rnd_xy, ratio=0.2))
+plt.show()
+```
+
+
+## Hierarchies
+Hierachy file is currently only loaded. Code for proper processing is needed!