|
@@ -26,24 +26,6 @@ def asarray(im, dtype=np.uint8):
|
|
|
raise ValueError("Unknown image instance ({})!".format(type(im)))
|
|
|
|
|
|
|
|
|
-def uniform_parts(im, ratio=DEFAULT_RATIO, round_op=np.floor):
|
|
|
- h, w, c = dimensions(im)
|
|
|
-
|
|
|
- part_w = round_op(w * ratio).astype(np.int32)
|
|
|
- part_h = round_op(h * ratio).astype(np.int32)
|
|
|
-
|
|
|
- n, m = w // part_w, h // part_h
|
|
|
-
|
|
|
- parts = np.ones((n*m, 4), dtype=int)
|
|
|
- parts[:, 0] = np.arange(n*m)
|
|
|
-
|
|
|
- for x in range(n):
|
|
|
- for y in range(m):
|
|
|
- i = y * n + x
|
|
|
- x0, y0 = x * part_w, y * part_h
|
|
|
- parts[i, 1:3] = [x0 + part_w // 2, y0 + part_h // 2]
|
|
|
-
|
|
|
- return parts
|
|
|
|
|
|
def select_crops(crops, mask):
|
|
|
selected = np.zeros_like(crops)
|
|
@@ -83,6 +65,26 @@ def random_idxs(idxs, rnd=None, n_parts=None):
|
|
|
# def __expand_parts(p):
|
|
|
# return p[:, 0], p[:, 1:3], p[:, 3].astype(bool)
|
|
|
|
|
|
+def uniform_parts(im, ratio=DEFAULT_RATIO, round_op=np.floor):
|
|
|
+ raise DeprecationWarning("Do not use me!")
|
|
|
+ # h, w, c = dimensions(im)
|
|
|
+
|
|
|
+ # part_w = round_op(w * ratio).astype(np.int32)
|
|
|
+ # part_h = round_op(h * ratio).astype(np.int32)
|
|
|
+
|
|
|
+ # n, m = w // part_w, h // part_h
|
|
|
+
|
|
|
+ # parts = np.ones((n*m, 4), dtype=int)
|
|
|
+ # parts[:, 0] = np.arange(n*m)
|
|
|
+
|
|
|
+ # for x in range(n):
|
|
|
+ # for y in range(m):
|
|
|
+ # i = y * n + x
|
|
|
+ # x0, y0 = x * part_w, y * part_h
|
|
|
+ # parts[i, 1:3] = [x0 + part_w // 2, y0 + part_h // 2]
|
|
|
+
|
|
|
+ # return parts
|
|
|
+
|
|
|
def rescale_parts(im, parts, part_rescale_size):
|
|
|
raise DeprecationWarning("Do not use me!")
|
|
|
# if part_rescale_size is None or part_rescale_size < 0:
|