import numpy as np from PIL.Image import Image as PIL_Image DEFAULT_RATIO = np.sqrt(49 / 400) # def __expand_parts(p): # return p[:, 0], p[:, 1:3], p[:, 3].astype(bool) def rescale_parts(im, parts, part_rescale_size): if part_rescale_size is None or part_rescale_size < 0: return parts h, w, c = dimensions(im) scale = np.array([w, h]) / part_rescale_size xy = parts[:, 1:3] xy = xy * scale parts[:, 1:3] = xy if parts.shape[1] == 5: wh = parts[:, 3:5] wh = wh * scale parts[:, 3:5] = wh return parts def dimensions(im): if isinstance(im, np.ndarray): if im.ndim != 3: import pdb; pdb.set_trace() assert im.ndim == 3, "Only RGB images are currently supported!" return im.shape elif isinstance(im, PIL_Image): w, h = im.size c = len(im.getbands()) # assert c == 3, "Only RGB images are currently supported!" return h, w, c else: raise ValueError("Unknown image instance ({})!".format(type(im))) def asarray(im, dtype=np.uint8): if isinstance(im, np.ndarray): return im.astype(dtype) elif isinstance(im, PIL_Image): return np.asarray(im, dtype=dtype) else: raise ValueError("Unknown image instance ({})!".format(type(im))) def uniform_parts(im, ratio=DEFAULT_RATIO, round_op=np.floor): h, w, c = dimensions(im) part_w = round_op(w * ratio).astype(np.int32) part_h = round_op(h * ratio).astype(np.int32) n, m = w // part_w, h // part_h parts = np.ones((n*m, 4), dtype=int) parts[:, 0] = np.arange(n*m) for x in range(n): for y in range(m): i = y * n + x x0, y0 = x * part_w, y * part_h parts[i, 1:3] = [x0 + part_w // 2, y0 + part_h // 2] return parts def visible_part_locs(p): res = p.visible_locs() return res # idxs, locs, vis = __expand_parts(p) # return idxs[vis], locs[vis].T def crop(im, xy, ratio=DEFAULT_RATIO, padding_mode="edge"): h, w, c = dimensions(im) crop_h, crop_w = int(h * ratio), int(w * ratio) pad_h, pad_w = crop_h // 2, crop_w // 2 padded_im = np.pad(im, [(pad_h, pad_h), (pad_w, pad_w), [0,0]], mode=padding_mode) x0, y0 = xy[0] - crop_w // 2 + pad_w, xy[1] - crop_h // 2 + pad_h return padded_im[y0:y0+crop_h, x0:x0+crop_w] def crops(im, xy, ratio=DEFAULT_RATIO, padding_mode="edge"): return np.stack([crop(im, x, y, ratio, padding_mode) for (x,y) in xy.T]) def visible_crops(im, p, *args, **kw): res = p.visible_crops(*args, **kw) return res # idxs, locs, vis = __expand_parts(p) # parts = crops(asarray(im), locs[vis].T, *args, **kw) # res = np.zeros((len(idxs),) + parts.shape[1:], dtype=parts.dtype) # res[vis] = parts # return res def reveal_parts(im, xy, ratio=DEFAULT_RATIO): h, w, c = dimensions(im) crop_h, crop_w = int(h * ratio), int(w * ratio) im = asarray(im) res = np.zeros_like(im) for x, y in xy.T: x0, y0 = max(x - crop_w // 2, 0), max(y - crop_h // 2, 0) res[y0:y0+crop_h, x0:x0+crop_w] = im[y0:y0+crop_h, x0:x0+crop_w] return res def select(crops, mask): selected = np.zeros_like(crops) selected[mask] = crops[mask] return selected def selection_mask(idxs, n): return np.bincount(idxs, minlength=n).astype(bool) def random_select(idxs, xy, part_crops, *args, **kw): rnd_idxs = random_idxs(np.arange(len(idxs)), *args, **kw) idxs = idxs[rnd_idxs] xy = xy[:, rnd_idxs] mask = selection_mask(idxs, len(part_crops)) selected_crops = select(part_crops, mask) return idxs, xy, selected_crops def random_idxs(idxs, rnd=None, n_parts=None): if rnd is None or isinstance(rnd, int): rnd = np.random.RandomState(rnd) else: assert isinstance(rnd, np.random.RandomState), \ "'rnd' should be either a random seed or a RandomState instance!" n_parts = n_parts or rnd.randint(1, len(idxs)) res = rnd.choice(idxs, n_parts, replace=False) res.sort() return res