from imageio import imread import numpy as np class Dataset(object): def __init__(self, uuids, annotations): super(Dataset, self).__init__() self.uuids = uuids self._annot = annotations def __len__(self): return len(self.uuids) def _get(self, method, i): return getattr(self._annot, method)(self.uuids[i]) def get_example(self, i, mode="RGB"): methods = ["image", "parts", "label"] im_path, parts, label = [self._get(m, i) for m in methods] return imread(im_path, pilmode=mode), parts, label __getitem__ = get_example # some convention functions DEFAULT_RATIO = np.sqrt(49 / 400) def __expand_parts(p): return p[:, 0], p[:, 1:3], p[:, 3].astype(bool) def visible_part_locs(p): idxs, locs, vis = __expand_parts(p) return idxs[vis], locs[vis].T def visible_crops(im, p, ratio=DEFAULT_RATIO, padding_mode="edge"): assert im.ndim == 3, "Only RGB images are currently supported!" idxs, locs, vis = __expand_parts(p) h, w, c = im.shape crop_h = crop_w = int(np.sqrt(h * w) * ratio) crops = np.zeros((len(idxs), crop_h, crop_w, c), dtype=im.dtype) padding = np.array([crop_h, crop_w]) // 2 padded_im = np.pad(im, [padding, padding, [0,0]], mode=padding_mode) for i, loc, is_vis in zip(idxs, locs, vis): if not is_vis: continue x0, y0 = loc - crop_h // 2 + padding crops[i] = padded_im[y0:y0+crop_h, x0:x0+crop_w] return crops def reveal_parts(im, xy, ratio=DEFAULT_RATIO): h, w, c = im.shape crop_h = crop_w = int(np.sqrt(h * w) * ratio) x0y0 = xy - crop_h // 2 res = np.zeros_like(im) for x0, y0 in x0y0.T: x1, y1 = x0 + crop_w, y0 + crop_w x0, y0 = max(x0, 0), max(y0, 0) res[y0:y0+crop_h, x0:x0+crop_w] = im[y0:y0+crop_h, x0:x0+crop_w] return res