display.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. #!/usr/bin/env python
  2. if __name__ != '__main__': raise Exception("Do not import me!")
  3. from argparse import ArgumentParser
  4. import logging
  5. import numpy as np
  6. from annotations import NAB_Annotations, CUB_Annotations
  7. from dataset import Dataset, reveal_parts, \
  8. visible_part_locs, visible_crops, \
  9. uniform_part_locs, crops
  10. import matplotlib.pyplot as plt
  11. def init_logger(args):
  12. fmt = "%(levelname)s - [%(asctime)s] %(filename)s:%(lineno)d [%(funcName)s]: %(message)s"
  13. logging.basicConfig(
  14. format=fmt,
  15. level=getattr(logging, args.loglevel.upper(), logging.DEBUG),
  16. filename=args.logfile or None,
  17. filemode="w")
  18. def main(args):
  19. init_logger(args)
  20. annotation_cls = dict(
  21. nab=NAB_Annotations,
  22. cub=CUB_Annotations)
  23. logging.info("Loading \"{}\" annnotations from \"{}\"".format(args.dataset, args.data))
  24. annot = annotation_cls.get(args.dataset.lower())(args.data)
  25. uuids = getattr(annot, "{}_uuids".format(args.subset.lower()))
  26. data = Dataset(uuids, annot)
  27. n_images = len(data)
  28. logging.info("Found {} images in the {} subset".format(n_images, args.subset))
  29. for i in range(n_images):
  30. if i + 1 <= args.start: continue
  31. im, parts, label = data[i]
  32. if args.uniform_parts:
  33. idxs, xy = uniform_part_locs(im, ratio=args.ratio)
  34. else:
  35. idxs, xy = visible_part_locs(parts)
  36. logging.debug(label)
  37. logging.debug(idxs)
  38. fig1 = plt.figure(figsize=(16,9))
  39. ax = fig1.add_subplot(2,1,1)
  40. ax.imshow(im)
  41. ax.scatter(*xy, marker="x", c=idxs)
  42. ax = fig1.add_subplot(2,1,2)
  43. ax.imshow(reveal_parts(im, xy, ratio=args.ratio))
  44. ax.scatter(*xy, marker="x", c=idxs)
  45. fig2 = plt.figure(figsize=(16,9))
  46. if args.uniform_parts:
  47. part_crops = crops(im, xy, ratio=args.ratio)
  48. else:
  49. part_crops = visible_crops(im, parts, ratio=args.ratio)
  50. n_crops = len(part_crops)
  51. rows = int(np.ceil(np.sqrt(n_crops)))
  52. cols = int(np.ceil(n_crops / rows))
  53. for j, crop in enumerate(part_crops, 1):
  54. ax = fig2.add_subplot(rows, cols, j)
  55. ax.imshow(crop)
  56. middle_h, middle_w = crop.shape[0] / 2, crop.shape[1] / 2
  57. ax.scatter(middle_w, middle_h, marker="x")
  58. plt.show()
  59. plt.close(fig1)
  60. plt.close(fig2)
  61. if i+1 >= args.start + args.n_images: break
  62. parser = ArgumentParser()
  63. parser.add_argument("data",
  64. help="Folder containing the dataset with images and annotation files",
  65. type=str)
  66. parser.add_argument("--dataset",
  67. help="Possible datasets: NAB, CUB",
  68. choices=["cub", "nab"],
  69. default="nab", type=str)
  70. parser.add_argument("--subset",
  71. help="Possible subsets: train, test",
  72. choices=["train", "test"],
  73. default="train", type=str)
  74. parser.add_argument("--start", "-s",
  75. help="Image id to start with",
  76. type=int, default=0)
  77. parser.add_argument("--n_images", "-n",
  78. help="Number of images to display",
  79. type=int, default=10)
  80. parser.add_argument("--ratio",
  81. help="Part extraction ratio",
  82. type=float, default=.2)
  83. parser.add_argument("--uniform_parts", "-u",
  84. help="Do not use GT parts, but sample parts uniformly from the image",
  85. action="store_true")
  86. parser.add_argument(
  87. '--logfile', type=str, default='',
  88. help='File for logging output')
  89. parser.add_argument(
  90. '--loglevel', type=str, default='INFO',
  91. help='logging level. see logging module for more information')
  92. main(parser.parse_args())