123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- #!/usr/bin/env python
- if __name__ != '__main__': raise Exception("Do not import me!")
- import sys
- sys.path.insert(0, "..")
- """
- Possible calls:
- ./display.sh /home/korsch1/korsch/datasets/birds/cub200_11 --dataset cub -s600 -n5 --features /home/korsch1/korsch/datasets/birds/features/{train,val}_16parts_gt.npz --ratio 0.31
- > displays GT parts of CUB200
- ./display.sh /home/korsch1/korsch/datasets/birds/NAC/2017-bilinear/ --dataset cub -s600 -n5 --features /home/korsch1/korsch/datasets/birds/features/{train,val}_16parts_gt.npz --ratio 0.31 --rescale_size 227
- > displays NAC parts of CUB200
- """
- from argparse import ArgumentParser
- import logging
- import numpy as np
- from annotations import NAB_Annotations, CUB_Annotations
- from dataset import Dataset
- from dataset.utils import reveal_parts, uniform_parts, \
- random_select, \
- visible_part_locs, visible_crops
- import matplotlib.pyplot as plt
- def init_logger(args):
- fmt = "%(levelname)s - [%(asctime)s] %(filename)s:%(lineno)d [%(funcName)s]: %(message)s"
- logging.basicConfig(
- format=fmt,
- level=getattr(logging, args.loglevel.upper(), logging.DEBUG),
- filename=args.logfile or None,
- filemode="w")
- def plot_crops(crops, title, scatter_mid=False, names=None):
- fig = plt.figure(figsize=(16,9))
- fig.suptitle(title, fontsize=16)
- n_crops = crops.shape[0]
- rows = int(np.ceil(np.sqrt(n_crops)))
- cols = int(np.ceil(n_crops / rows))
- for j, crop in enumerate(crops, 1):
- ax = fig.add_subplot(rows, cols, j)
- if names is not None:
- ax.set_title(names[j-1])
- ax.imshow(crop)
- ax.axis("off")
- if scatter_mid:
- middle_h, middle_w = crop.shape[0] / 2, crop.shape[1] / 2
- ax.scatter(middle_w, middle_h, marker="x")
- def main(args):
- init_logger(args)
- annotation_cls = dict(
- nab=NAB_Annotations,
- cub=CUB_Annotations)
- logging.info("Loading \"{}\" annnotations from \"{}\"".format(args.dataset, args.data))
- annot = annotation_cls.get(args.dataset.lower())(args.data)
- subset = args.subset.lower()
- uuids = getattr(annot, "{}_uuids".format(subset))
- features = args.features[0 if subset == "train" else 1]
- data = Dataset(
- uuids=uuids, annotations=annot,
- part_rescale_size=args.rescale_size,
- features=features,
- uniform_parts=args.uniform_parts,
- crop_to_bb=args.crop_to_bb,
- crop_uniform=args.crop_uniform,
- parts_in_bb=args.parts_in_bb,
- rnd_select=args.rnd,
- ratio=args.ratio,
- seed=args.seed
- )
- n_images = len(data)
- logging.info("Found {} images in the {} subset".format(n_images, subset))
- for i in range(n_images):
- if i + 1 <= args.start: continue
- im, parts, label = data[i]
- idxs, xy = visible_part_locs(parts)
- part_crops = visible_crops(im, parts, ratio=args.ratio)
- if args.rnd:
- selected = parts[:, -1].astype(bool)
- parts[selected, -1] = 0
- parts[np.logical_not(selected), -1] = 1
- action_crops = visible_crops(im, parts, ratio=args.ratio)
- logging.debug(label)
- logging.debug(idxs)
- logging.debug(xy)
- fig1 = plt.figure(figsize=(16,9))
- ax = fig1.add_subplot(2,1,1)
- ax.imshow(im)
- ax.set_title("Visible Parts")
- ax.scatter(*xy, marker="x", c=idxs)
- ax.axis("off")
- ax = fig1.add_subplot(2,1,2)
- ax.set_title("{}selected parts".format("randomly " if args.rnd else ""))
- ax.imshow(reveal_parts(im, xy, ratio=args.ratio))
- # ax.scatter(*xy, marker="x", c=idxs)
- ax.axis("off")
- crop_names = list(data._annot.part_names.values())
- plot_crops(part_crops, "Selected parts", names=crop_names)
- if args.rnd:
- plot_crops(action_crops, "Actions")
- plt.show()
- plt.close()
- if i+1 >= args.start + args.n_images: break
- parser = ArgumentParser()
- parser.add_argument("data",
- help="Folder containing the dataset with images and annotation files",
- type=str)
- parser.add_argument("--dataset",
- help="Possible datasets: NAB, CUB",
- choices=["cub", "nab"],
- default="nab", type=str)
- parser.add_argument("--features",
- help="pre-extracted train and test features",
- default=[None, None],
- nargs=2, type=str)
- parser.add_argument("--subset",
- help="Possible subsets: train, test",
- choices=["train", "test"],
- default="train", type=str)
- parser.add_argument("--start", "-s",
- help="Image id to start with",
- type=int, default=0)
- parser.add_argument("--n_images", "-n",
- help="Number of images to display",
- type=int, default=10)
- parser.add_argument("--ratio",
- help="Part extraction ratio",
- type=float, default=.2)
- parser.add_argument("--rescale_size",
- help="rescales the part positions from this size to original image size",
- type=int, default=-1)
- parser.add_argument("--rnd",
- help="select random subset of present parts",
- action="store_true")
- parser.add_argument("--uniform_parts", "-u",
- help="Do not use GT parts, but sample parts uniformly from the image",
- action="store_true")
- parser.add_argument("--crop_to_bb",
- help="Crop image to the bounding box",
- action="store_true")
- parser.add_argument("--crop_uniform",
- help="Try to extend the bounding box to same height and width",
- action="store_true")
- parser.add_argument("--parts_in_bb",
- help="Only display parts, that are inside the bounding box",
- action="store_true")
- parser.add_argument(
- '--logfile', type=str, default='',
- help='File for logging output')
- parser.add_argument(
- '--loglevel', type=str, default='INFO',
- help='logging level. see logging module for more information')
- parser.add_argument(
- '--seed', type=int, default=12311123,
- help='random seed')
- main(parser.parse_args())
|