12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import numpy as np
- import simplejson as json
- from os.path import join
- from nabirds.utils import _MetaInfo
- from .base import BaseAnnotations
- class INAT19_Annotations(BaseAnnotations):
- name="INAT19"
- @property
- def meta(self):
- info = _MetaInfo(
- images_folder="images",
- content="trainval2019.json",
- val_content="val2019.json",
- # train_content="train2019.json",
- # fake bounding boxes: the whole image
- bounding_box_dtype=np.dtype([(v, np.int32) for v in "xywh"]),
- parts_file=join("parts", "part_locs.txt"),
- part_names_file=join("parts", "parts.txt"),
- )
- info.structure = [
- [info.content, "_content"],
- [info.val_content, "_val_content"],
- [info.parts_file, "_part_locs"],
- [info.part_names_file, "_part_names"],
- ]
- return info
- def read_content(self, json_file, attr):
- if not json_file.endswith(".json"):
- return super(INAT19_Annotations, self).read_content(json_file, attr)
- with self._open(json_file) as f:
- content = json.load(f)
- setattr(self, attr, content)
- def parts(self, *args, **kwargs):
- if self.has_parts:
- return super(INAT19_Annotations, self).parts(*args, **kwargs)
- return None
- def bounding_box(self, uuid):
- return self.bounding_boxes[self.uuid_to_idx[uuid]].copy()
- def _load_bounding_boxes(self):
- self.bounding_boxes = np.zeros(len(self.uuids), dtype=self.meta.bounding_box_dtype)
- for i, im in enumerate(self._content["images"]):
- self.bounding_boxes[i]["w"] = im["width"]
- self.bounding_boxes[i]["h"] = im["height"]
- def _load_parts(self):
- self.part_names = {}
- # load only if present
- if self.has_parts:
- super(INAT19_Annotations, self)._load_parts()
- self._load_bounding_boxes()
- def _load_split(self):
- self.train_split = np.ones(len(self.uuids), dtype=bool)
- val_uuids = [im["id"] for im in self._val_content["images"]]
- for v_uuid in val_uuids:
- self.train_split[self.uuid_to_idx[v_uuid]] = False
- self.test_split = np.logical_not(self.train_split)
- def _load_labels(self):
- self.labels = np.zeros(len(self.uuids), dtype=np.int32)
- labs = {annot["image_id"]: annot["category_id"] for annot in self._content["annotations"]}
- for uuid in self.uuids:
- self.labels[self.uuid_to_idx[uuid]] = labs[uuid]
- def _load_uuids(self):
- uuid_fnames = [(im["id"], im["file_name"]) for im in self._content["images"]]
- self.uuids, self.images = map(np.array, zip(*uuid_fnames))
- self.uuid_to_idx = {uuid: i for i, uuid in enumerate(self.uuids)}
|