inat.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. import numpy as np
  2. import simplejson as json
  3. from os.path import join
  4. from nabirds.utils import _MetaInfo
  5. from .base import BaseAnnotations
  6. class INAT19_Annotations(BaseAnnotations):
  7. name="INAT19"
  8. @property
  9. def meta(self):
  10. info = _MetaInfo(
  11. images_folder="images",
  12. content="trainval2019.json",
  13. val_content="val2019.json",
  14. # train_content="train2019.json",
  15. # fake bounding boxes: the whole image
  16. bounding_box_dtype=np.dtype([(v, np.int32) for v in "xywh"]),
  17. parts_file=join("parts", "part_locs.txt"),
  18. part_names_file=join("parts", "parts.txt"),
  19. )
  20. info.structure = [
  21. [info.content, "_content"],
  22. [info.val_content, "_val_content"],
  23. [info.parts_file, "_part_locs"],
  24. [info.part_names_file, "_part_names"],
  25. ]
  26. return info
  27. def read_content(self, json_file, attr):
  28. if not json_file.endswith(".json"):
  29. return super(INAT19_Annotations, self).read_content(json_file, attr)
  30. with self._open(json_file) as f:
  31. content = json.load(f)
  32. setattr(self, attr, content)
  33. def parts(self, *args, **kwargs):
  34. if self.has_parts:
  35. return super(INAT19_Annotations, self).parts(*args, **kwargs)
  36. return None
  37. def bounding_box(self, uuid):
  38. return self.bounding_boxes[self.uuid_to_idx[uuid]].copy()
  39. def _load_bounding_boxes(self):
  40. self.bounding_boxes = np.zeros(len(self.uuids), dtype=self.meta.bounding_box_dtype)
  41. for i, im in enumerate(self._content["images"]):
  42. self.bounding_boxes[i]["w"] = im["width"]
  43. self.bounding_boxes[i]["h"] = im["height"]
  44. def _load_parts(self):
  45. self.part_names = {}
  46. # load only if present
  47. if self.has_parts:
  48. super(INAT19_Annotations, self)._load_parts()
  49. self._load_bounding_boxes()
  50. def _load_split(self):
  51. self.train_split = np.ones(len(self.uuids), dtype=bool)
  52. val_uuids = [im["id"] for im in self._val_content["images"]]
  53. for v_uuid in val_uuids:
  54. self.train_split[self.uuid_to_idx[v_uuid]] = False
  55. self.test_split = np.logical_not(self.train_split)
  56. def _load_labels(self):
  57. self.labels = np.zeros(len(self.uuids), dtype=np.int32)
  58. labs = {annot["image_id"]: annot["category_id"] for annot in self._content["annotations"]}
  59. for uuid in self.uuids:
  60. self.labels[self.uuid_to_idx[uuid]] = labs[uuid]
  61. def _load_uuids(self):
  62. uuid_fnames = [(im["id"], im["file_name"]) for im in self._content["images"]]
  63. self.uuids, self.images = map(np.array, zip(*uuid_fnames))
  64. self.uuid_to_idx = {uuid: i for i, uuid in enumerate(self.uuids)}