inat.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. import numpy as np
  2. import simplejson as json
  3. from os.path import join
  4. from nabirds.utils import _MetaInfo
  5. from .base import BaseAnnotations
  6. class INAT19_Annotations(BaseAnnotations):
  7. name="INAT19"
  8. @property
  9. def meta(self):
  10. info = _MetaInfo(
  11. images_folder="",
  12. content="trainval2019.json",
  13. val_content="val2019.json",
  14. # train_content="train2019.json",
  15. # fake bounding boxes: the whole image
  16. parts_file=join("parts", "part_locs.txt"),
  17. bounding_box_dtype=np.dtype([(v, np.int32) for v in "xywh"]),
  18. )
  19. info.structure = [
  20. [info.content, "_content"],
  21. [info.val_content, "_val_content"],
  22. [info.parts_file, "_part_locs"],
  23. ]
  24. return info
  25. def read_content(self, json_file, attr):
  26. if not json_file.endswith(".json"):
  27. return super(INAT19_Annotations, self).read_content(json_file, attr)
  28. with self._open(json_file) as f:
  29. content = json.load(f)
  30. setattr(self, attr, content)
  31. def parts(self, *args, **kwargs):
  32. if self.has_parts:
  33. return super(INAT19_Annotations, self).parts(*args, **kwargs)
  34. return None
  35. def bounding_box(self, uuid):
  36. return self.bounding_boxes[self.uuid_to_idx[uuid]].copy()
  37. def _load_bounding_boxes(self):
  38. self.bounding_boxes = np.zeros(len(self.uuids), dtype=self.meta.bounding_box_dtype)
  39. for i, im in enumerate(self._content["images"]):
  40. self.bounding_boxes[i]["w"] = im["width"]
  41. self.bounding_boxes[i]["h"] = im["height"]
  42. def _load_parts(self):
  43. self.part_names = {}
  44. # load only if present
  45. if self.has_parts:
  46. super(INAT19_Annotations, self)._load_parts()
  47. self._load_bounding_boxes()
  48. def _load_split(self):
  49. self.train_split = np.ones(len(self.uuids), dtype=bool)
  50. val_uuids = [im["id"] for im in self._val_content["images"]]
  51. for v_uuid in val_uuids:
  52. self.train_split[self.uuid_to_idx[v_uuid]] = False
  53. self.test_split = np.logical_not(self.train_split)
  54. def _load_labels(self):
  55. self.labels = np.zeros(len(self.uuids), dtype=np.int32)
  56. labs = {annot["image_id"]: annot["category_id"] for annot in self._content["annotations"]}
  57. for uuid in self.uuids:
  58. self.labels[self.uuid_to_idx[uuid]] = labs[uuid]
  59. def _load_uuids(self):
  60. uuid_fnames = [(im["id"], im["file_name"]) for im in self._content["images"]]
  61. self.uuids, self.images = map(np.array, zip(*uuid_fnames))
  62. self.uuid_to_idx = {uuid: i for i, uuid in enumerate(self.uuids)}