info.yml 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. BASE_DIR: /home/korsch_data/
  2. DATA_DIR: datasets
  3. MODEL_DIR: models
  4. ############ Existing models
  5. ### weights are used for fine-tuning
  6. MODELS:
  7. cvmodelz.InceptionV3: &inception
  8. folder: inception
  9. weights:
  10. inat: model.inat.ckpt.npz
  11. imagenet: model.imagenet.ckpt.npz
  12. cvmodelz.ResNet50: &resnet50
  13. folder: resnet
  14. weights:
  15. imagenet: model.npz
  16. cvmodelz.VGG19: &vgg19
  17. folder: vgg19
  18. weights:
  19. imagenet: model.npz
  20. # efficientnet: &efficientnet
  21. # folder: efficientnet
  22. # class_key: efficientnet
  23. # weights: model.imagenet.npz
  24. # inception_inat: &inception_inat
  25. # folder: inception
  26. # class_key: inception
  27. # weights: model.inat.ckpt.npz
  28. # inception_imagenet: &inception_inet
  29. # folder: inception
  30. # class_key: inception
  31. # weights: model.imagenet.ckpt.npz
  32. # inception:
  33. # <<: *inception_inat
  34. # inception_tf_inat: &inception_tf_inat
  35. # folder: inception_tf
  36. # class_key: inception_tf
  37. # weights: inception_v3_iNat_299.ckpt
  38. # inception_tf_inet: &inception_tf_inet
  39. # folder: inception_tf
  40. # class_key: inception_tf
  41. # weights: inception_v3_ILSVRC_299.ckpt
  42. # inception_tf: &inception_tf
  43. # <<: *inception_tf_inat
  44. # resnet: &resnet50
  45. # folder: resnet
  46. # class_key: resnet
  47. # weights: model.npz
  48. # vgg19: &vgg19
  49. # folder: vgg19
  50. # class_key: vgg19
  51. # weights: model.npz
  52. ############ Existing Datasets
  53. DATASETS:
  54. IMAGENET: &inet
  55. folder: ImageNet
  56. annotations: "BJOERN"
  57. annotation_type: FOLDER
  58. train_images: ILSVRC2012_img_train
  59. val_images: ILSVRC2012_img_val
  60. n_classes: 1000
  61. IMAGENET_TOP_INAT20: &inet_top_inat20
  62. <<: *inet
  63. annotations: "TOP_INAT20"
  64. n_classes: 44
  65. CUB200: &cub200
  66. folder: birds/cub200
  67. annotations: "ORIGINAL"
  68. annotation_type: FILE_LIST
  69. n_classes: 200
  70. CUB10: &cub10
  71. <<: *cub200
  72. annotations: "cub10"
  73. n_classes: 10
  74. CUB200_2FOLD: &cub200_2fold
  75. <<: *cub200
  76. folder: birds/cub200_2fold
  77. CUB200_GOOGLE: &cub200_google
  78. <<: *cub200
  79. folder: birds/cub200_google_images
  80. CUB200_GOOGLE_SEM: &cub200_google_sem
  81. <<: *cub200
  82. folder: birds/cub200_google_images
  83. annotations: "sem_selected"
  84. NAB: &nabirds
  85. folder: birds/nabirds
  86. annotations: "ORIGINAL"
  87. annotation_type: FILE_LIST
  88. n_classes: 555
  89. BIRDSNAP: &birdsnap
  90. folder: birds/birdsnap
  91. annotations: "RESIZED"
  92. annotation_type: FILE_LIST
  93. n_classes: 500
  94. CARS: &cars
  95. folder: cars
  96. annotations: "ORIGINAL"
  97. annotation_type: FILE_LIST
  98. n_classes: 196
  99. DOGS: &dogs
  100. folder: dogs
  101. annotations: "ORIGINAL"
  102. annotation_type: FILE_LIST
  103. n_classes: 120
  104. FLOWERS: &flowers
  105. folder: flowers
  106. annotations: "flowers102"
  107. annotation_type: FILE_LIST
  108. n_classes: 102
  109. HERBA19: &herba19
  110. folder: herbarium
  111. annotations: "2019"
  112. annotation_type: FOLDER
  113. train_images: small-train
  114. val_images: small-validation
  115. test_images: small-test
  116. n_classes: 683
  117. INAT20: &inat20
  118. folder: inat
  119. annotations: "2020/PLAIN"
  120. annotation_type: JSON
  121. n_classes: 200
  122. INAT20_IN_CLASS: &inat20_in_class
  123. <<: *inat20
  124. annotations: "2020/IN_CLASS"
  125. INAT20_NOISY_IN_CLASS: &inat20_noisy_in_class
  126. <<: *inat20
  127. annotations: "2020/NOISY_IN_CLASS"
  128. INAT20_OUT_CLASS: &inat20_out_class
  129. <<: *inat20
  130. annotations: "2020/OUT_CLASS"
  131. INAT20_NOISY_OUT_CLASS: &inat20_noisy_out_class
  132. <<: *inat20
  133. annotations: "2020/NOISY_OUT_CLASS"
  134. INAT20_U_OUT_CLASS: &inat20_u_out_class
  135. <<: *inat20
  136. annotations: "2020/U_OUT_CLASS"
  137. INAT20_TEST: &inat20_test
  138. <<: *inat20
  139. annotations: "2020/TEST"
  140. INAT19: &inat19
  141. folder: inat
  142. annotations: "2019"
  143. annotation_type: JSON
  144. n_classes: 1010
  145. INAT19_MINI: &inat19_mini
  146. <<: *inat19
  147. annotations: "2019_small"
  148. feature_suffix: .mini
  149. INAT19_TEST: &inat19_test
  150. <<: *inat19
  151. annotations: "2019_test"
  152. feature_suffix: .test
  153. INAT18: &inat18
  154. folder: inat
  155. annotations: "2018"
  156. annotation_type: JSON
  157. n_classes: 8142
  158. HED: &hed
  159. folder: medical/HED
  160. annotations: "patches224x224"
  161. annotation_type: FILE_LIST
  162. n_classes: 2
  163. TIGERS: &tigers
  164. folder: tigers
  165. annotations: "reid/train"
  166. annotation_type: FILE_LIST
  167. n_classes: 107
  168. TIGERS_TEST: &tigers_test
  169. <<: *tigers
  170. annotations: "reid/test"
  171. ############ Existing Part Annotations and Part Features
  172. ### feature file name composition:
  173. # ${BASE_DIR}/${DATA_DIR}/${DATASETS:folder}/${PART_TYPES:annotations}/features
  174. PART_TYPES:
  175. GLOBAL: &parts_global
  176. feature_suffix: ""
  177. UNI: &parts_uni
  178. is_uniform: true
  179. feature_suffix: _26parts_uniform
  180. rescale_size: !!int -1
  181. scales:
  182. - 0.2
  183. GT: &parts_gt
  184. feature_suffix: _16parts_gt
  185. rescale_size: !!int -1
  186. scales:
  187. - 0.31
  188. GT2: &parts_gt2
  189. # TODO: should be changed, since GT2 parts can also be present for other datasets
  190. annotations: cub200_11_regrouped
  191. feature_suffix: _5parts_gt
  192. rescale_size: !!int -1
  193. scales:
  194. - 0.31
  195. NAC: &parts_nac
  196. annotations: NAC/2017-bilinear
  197. feature_suffix: _20parts
  198. rescale_size: !!int 224
  199. scales:
  200. - 0.31
  201. - 0.45
  202. L1_pred: &parts_l1p
  203. annotations: L1_pred
  204. feature_suffix: _5parts_L1_pred
  205. rescale_size: !!int 427
  206. scales: [-1]
  207. L1_full: &parts_l1f
  208. annotations: L1_full
  209. feature_suffix: _5parts_L1_full
  210. rescale_size: !!int 427
  211. scales: [-1]
  212. NTS: &parts_nts
  213. annotations: NTS
  214. feature_suffix: _7parts_nts
  215. rescale_size: !!int 448
  216. scales: [-1]
  217. NTS2: &parts_nts2
  218. annotations: NTS2
  219. feature_suffix: _5parts_nts
  220. rescale_size: !!int 448
  221. scales: [-1]
  222. PARTS:
  223. # all <DATASET>_<PART_TYPES> combinations are created implicitely.
  224. # if you want some changes in the configs, then crete here an entry
  225. # and update the config values
  226. ####################################
  227. # CUB200-2011
  228. ####################################
  229. CUB200_L1_pred:
  230. <<: *cub200
  231. <<: *parts_l1p
  232. annotations: cub200_11_L1_pred_old
  233. rescale_size: !!int 299
  234. CUB200_L1_full:
  235. <<: *cub200
  236. <<: *parts_l1f
  237. annotations: cub200_11_L1_full_old
  238. rescale_size: !!int 299
  239. CUB200_L1_pred_15:
  240. <<: *cub200
  241. <<: *parts_l1p
  242. annotations: L1_pred_15
  243. feature_suffix: _15parts_L1_pred
  244. CUB200_L1_full_15:
  245. <<: *cub200
  246. <<: *parts_l1f
  247. annotations: L1_full_15
  248. feature_suffix: _15parts_L1_full
  249. CUB200_L1_pred_2:
  250. <<: *cub200
  251. <<: *parts_l1p
  252. annotations: L1_pred_2
  253. feature_suffix: _2parts_L1_pred
  254. CUB200_L1_full_2:
  255. <<: *cub200
  256. <<: *parts_l1f
  257. annotations: L1_full_2
  258. feature_suffix: _2parts_L1_full
  259. ####################################
  260. # iNaturalist 2019
  261. ####################################
  262. INAT19_MINI_L1_pred:
  263. <<: *inat19_mini
  264. <<: *parts_l1p
  265. annotations: 2019_small_L1_pred
  266. feature_suffix: _5parts_L1_pred.mini
  267. INAT19_MINI_L1_full:
  268. <<: *inat19_mini
  269. <<: *parts_l1f
  270. annotations: 2019_small_L1_full
  271. feature_suffix: _5parts_L1_full.mini
  272. INAT19_TEST_L1_pred:
  273. <<: *inat19_test
  274. <<: *parts_l1p
  275. annotations: 2019_test_L1_pred
  276. feature_suffix: _5parts_L1_pred.test
  277. INAT19_TEST_L1_full:
  278. <<: *inat19_test
  279. <<: *parts_l1f
  280. annotations: 2019_test_L1_full
  281. feature_suffix: _5parts_L1_full.test