inat.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import numpy as np
  2. import simplejson as json
  3. from os.path import join
  4. from nabirds.utils import _MetaInfo
  5. from .base import BaseAnnotations
  6. class INAT19_Annotations(BaseAnnotations):
  7. name="INAT19"
  8. @property
  9. def meta(self):
  10. info = _MetaInfo(
  11. images_folder="",
  12. content="trainval2019.json",
  13. val_content="val2019.json",
  14. # train_content="train2019.json",
  15. # fake bounding boxes: the whole image
  16. bounding_box_dtype=np.dtype([(v, np.int32) for v in "xywh"])
  17. )
  18. info.structure = [
  19. [info.content, "_content"],
  20. [info.val_content, "_val_content"],
  21. ]
  22. return info
  23. def read_content(self, json_file, attr):
  24. with self._open(json_file) as f:
  25. content = json.load(f)
  26. setattr(self, attr, content)
  27. def parts(self, uuids):
  28. return None
  29. def bounding_box(self, uuid):
  30. return self.bounding_boxes[self.uuid_to_idx[uuid]].copy()
  31. def _load_bounding_boxes(self):
  32. self.bounding_boxes = np.zeros(len(self.uuids), dtype=self.meta.bounding_box_dtype)
  33. for i, im in enumerate(self._content["images"]):
  34. self.bounding_boxes[i]["w"] = im["width"]
  35. self.bounding_boxes[i]["h"] = im["height"]
  36. def _load_parts(self):
  37. self.part_names = {}
  38. self._load_bounding_boxes()
  39. def _load_split(self):
  40. self.train_split = np.ones(len(self.uuids), dtype=bool)
  41. val_uuids = [im["id"] for im in self._val_content["images"]]
  42. for v_uuid in val_uuids:
  43. self.train_split[self.uuid_to_idx[v_uuid]] = False
  44. self.test_split = np.logical_not(self.train_split)
  45. def _load_labels(self):
  46. self.labels = np.zeros(len(self.uuids), dtype=np.int32)
  47. labs = {annot["image_id"]: annot["category_id"] for annot in self._content["annotations"]}
  48. for uuid in self.uuids:
  49. self.labels[self.uuid_to_idx[uuid]] = labs[uuid]
  50. def _load_uuids(self):
  51. uuid_fnames = [(im["id"], im["file_name"]) for im in self._content["images"]]
  52. self.uuids, self.images = map(np.array, zip(*uuid_fnames))
  53. self.uuid_to_idx = {uuid: i for i, uuid in enumerate(self.uuids)}